<ol id="ebnk9"></ol>
    1. 納米材料論文【五篇】(完整文檔)

      發布時間:2025-06-17 08:21:03   來源:心得體會    點擊:   
      字號:

      40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度下面是小編為大家整理的納米材料論文【五篇】(完整文檔),供大家參考。

      納米材料論文【五篇】

      納米材料論文范文第1篇

      40多年以前,科學家們就認識到實際材料中的無序結構是不容忽視的。許多新發現的物理效應,諸如某些相轉變、量子尺寸效應和有關的傳輸現象等,只出現在含有缺陷的有序固體中。事實上,如果多晶體中晶體區的特征尺度(晶?;蚓М犞睆交虮∧ず穸龋┻_到某種特征長度時(如電子波長、平均自由程、共格長度、相關長度等),材料的性能將不僅依賴于晶格原子的交互作用,也受其維數、尺度的減小和高密度缺陷控制。有鑒于此,HGleitCr認為,如果能夠合成出晶粒尺寸在納米量級的多晶體,即主要由非共格界面構成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶體構成],其結構將與普通多晶體(晶粒大于lmm)或玻璃(有序度小于2nm)明顯不同,稱之為"納米晶體材料"(nanocrystallinematerials)。后來,人們又將晶體區域或其它特征長度在納米量級范圍(小于100nn)的材料廣義定義為"納米材料"或"納米結構材料"(nanostructuredmaterials)。由于其獨特的微結構和奇異性能,納米材料引起了科學界的極大關注,成為世界范圍內的研究熱點,其領域涉及物理、化學、生物、微電子等諸多學科。目前,廣義的納米材料的主要?ǎ?BR>l)清潔或涂層表面的金屬、半導體或聚合物薄膜;
      2)人造超晶格和量子講結構;
      功半結晶聚合物和聚合物混和物;
      4)納米晶體和納米玻璃材料;
      5)金屬鍵、共價鍵或分子組元構成的納米復合材料。

      經過最近十多年的研究與探索,現已在納米材料制備方法、結構表征、物理和化學性能、實用化等方面取得顯著進展,研究成果日新月異,研究范圍不斷拓寬。本文主要從材料科學與工程的角度,介紹與評述納米金屬材料的某些研究進展。

      2納米材料的制備與合成

      材料的納米結構化可以通過多種制備途徑來實現。這些方法可大致歸類為"兩步過程"和"一步過程"。"兩步過程"是將預先制備的孤立納米顆粒因結成塊體材料。制備納米顆粒的方法包括物理氣相沉積(PVD)、化學氣相沉積(CVD)、微波等離子體、低壓火焰燃燒、電化學沉積、溶膠一凝膠過程、溶液的熱分解和沉淀等,其中,PVD法以"惰性氣體冷凝法"最具代表性。"一步過程"則是將外部能量引入或作用于母體材料,使其產生相或結構轉變,直接制備出塊體納米材料。諸如,非晶材料晶化、快速凝固、高能機械球磨、嚴重塑性形變、滑動磨損、高能粒子輻照和火花蝕刻等。目前,關于制備科學的研究主要集中于兩個方面:l)納米粉末制備技術、理論機制和模型。目的是改進納米材料的品質和產量;
      2)納米粉末的固結技術。以獲得密度和微結構可控的塊體材料或表面覆層。

      3納米材料的奇異性能

      1)原子的擴散行為

      原子擴散行為影響材料的許多性能,諸如蠕變、超塑性、電性能和燒結性等。納米晶Co的自擴散系數比Cu的體擴散系數大14~16個量級,比Cu的晶界自擴散系數大3個量級。Wurshum等最近的工作表明:Fe在納米晶N中的擴散系數遠低于早期報道的結果。納米晶Pd的界面擴散數據類似于普通的晶界擴散,這很可能是由于納米粒子固結成的塊狀試樣中的殘留疏松的影響。他們還報道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的復相納米合金(由Fe3Si納米金屬間化合物和晶間的非晶相構成)中的擴散要比在非晶合金中快10~14倍,這是由于存在過剩的熱平衡空位。Fe在Fe-Si納米晶中的擴散由空位調節控制。

      2)力學性能

      目前,關于納米材料的力學性能研究,包括硬度、斷裂韌性、壓縮和拉伸的應力一應變行為、應變速率敏感性、疲勞和蠕變等已經相當廣泛。所研究的材料涉及不同方法制備的純金屬、合金、金屬間化合物、復合材料和陶瓷。研究納米材料本征力學性能的關鍵是獲得內部沒有(或很少)孔隙、雜質或裂紋的塊狀試樣。由于試樣內有各種缺陷,早期的許多研究結果已被最近取得的結果所否定。樣品制備技術的日臻成熟與發展,使人們對納米材料本征力學性能的認識不斷深入。

      許多納米純金屬的室溫硬度比相應的粗晶高2~7倍。隨著晶粒的減小,硬度增加的現象幾乎是不同方法制備的樣品的一致表現。早期的研究認為,納米金屬的彈性模量明顯低于相應的粗晶材料。例如,納米晶Pd的楊氏和剪切模量大約是相應全密度粗晶的70%。然而,最近的研究發現,這完全是樣品中的缺陷造成的,納米晶Pd和Cu的彈性常數與相應粗晶大致相同,屈服強度是退火粗晶的10~15倍。晶粒小子50nm的Cu韌性很低,總延伸率僅1%~4%,晶粒尺寸為110nm的Cu延伸率大于8%。從粗晶到15urn,Cu的硬度測量值滿足HallPetch關系;
      小于15nm后,硬度隨晶粒尺寸的變化趨于平緩,雖然硬度值很高,但仍比由粗晶數據技HallPetch關系外推或由硬度值轉換的估計值低很多。不過,納米晶Cu的壓縮屈服強度與由粗晶數據的HallPetCh關系外推值和測量硬度的值(Hv/3)非常吻合,高密度納米晶Cu牙DPd的壓縮屈服強度可達到1GPa量級。

      盡管按照常規力學性能與晶粒尺寸關系外推,納米材料應該既具有高強度,又有較高韌性。但迄今為止,得到的納米金屬材料的韌性都很低。晶粒小于25nm時,其斷裂應變僅為<5%,遠低于相應粗晶材料。主要原因是納米晶體材料中存在各類缺陷、微觀應力及界面狀態等。用適當工藝制備的無缺陷、無微觀應力的納米晶體Cu,其拉伸應變量可高達30%,說明納米金屬材料的韌性可以大幅度提高。納米材料的塑性變形機理研究有待深入。

      納米晶金屬間化合物的硬度測試值表明,隨著晶粒的減小,在初始階段(類似于純金屬盼情況)發生硬化,進一步減小晶粒,硬化的斜率減緩或者發生軟化。由硬化轉變為軟化的行為是相當復雜的,但這些現象與樣品的制備方法無關。材料的熱處理和晶粒尺寸的變化可能導致微觀結構和成份的變化,如晶界、致密性、相變、應力等,都可能影響晶粒尺寸與硬度的關系。

      研究納米晶金屬間化合物的主要動機是探索改進金屬間化合物的室溫韌性的可能性。Bohn等首先提出納米晶金屬化合物幾種潛在的優越性。其中包括提高強度和韌性。Haubold及合作者研究了IGC法制備的NiAl的力學性能,但僅限于單一樣品在不同溫度退火后的硬度測量。Smith通過球磨NiAl得到晶粒尺寸從微米級至納米級的樣品,進行了"微型盤彎曲試驗",觀察到含碳量低的材料略表現出韌性,而含碳多的材料沒有韌性。最近Choudry等用"雙向盤彎曲試驗"研究了納米晶NiAl,發現晶粒小于10nm時,屈服強度高干粗晶NiAl,且在室溫下有韌性,對形變的貢獻主要源于由擴散控制的晶界滑移。室溫壓縮實驗顯示由球磨粉末固結成的納米晶Fe-28Al-2Cr具有良好的塑性(真應變大于1.4),且屈服強度高(是粗晶的1O倍)。測量TiAl(平均晶粒尺寸約10nm)的壓縮蠕變(高溫下測量硬度隨著恒載荷加載時間的變化)表明,在起始的快速蠕變之后,第二階段蠕變非常緩慢,這意味著發生了擴散控制的形變過程。低溫時(低于擴散蠕變開始溫度),納米晶的硬度變化很小。觀察到的硬度隨著溫度升高而下降,原因之一是壓頭載荷使樣品進一步致密化,而主要是因為材料流變加快。Mishra等報道,在750~950°C,10-5~10-3s-1的應?淥俾史段?,纳米晶Ti-47.5Al-3Cr(g-TiAl)合金的形變應力指數約為6,說明其形變機制為攀移位錯控制。

      值得注意的是,最近報道了用分子動力學計算機模擬研究納米材料的致密化過程和形變。納米Cu絲的模擬結果表明,高密度晶界對力學行為和塑性變形過程中的晶界遷移有顯著影響。納米晶(3~5nm)Ni在低溫高載荷塑性變形的模擬結果顯示,其塑性變形機制主是界面的粘滯流動、晶界運動和晶界旋轉,不發生開裂和位錯發散,這與粗晶材料是截然不同的。

      3)納米晶金屬的磁性

      早期的研究發現。納米晶Fe的飽和磁化強度試比普通塊材a-Fe約低40%。Wagner等用小角中子散射(SANS)實驗證實納米晶Fe由鐵磁性的晶粒和非鐵磁性(或弱鐵磁性)的界面區域構成,界面區域體積約占一半。納米晶Fe的磁交互作用不僅限于單個晶粒,而且可以擴展越過界面,使數百個晶粒磁化排列。

      Daroezi等證實球磨形成的納米晶Fe和Ni的飽和磁化強度與晶粒尺寸(50mm~7nm)無關,但納米晶的飽和磁化曲線形狀不同于微米晶材料。隨著晶粒減小,矯頑力顯著增加。Schaefer等報道,納米晶Ni中界面原子的磁拒降低至0.34mB/原子(塊狀Ni為0.6mB/原子),界面組份的居里溫度(545K)比塊狀晶體Ni的(630K)低。最近的研究還發現,制備時殘留在納米晶Ni中的內應力對磁性的影響很大,納米晶Ni的飽和磁化強度與粗晶Ni基本相同。

      Yoshizawa等報道了快淬的FeCuNbSiB非晶在初生晶化后,軟磁性能良好,可與被莫合金和最好的Co基調合金相媲美,且飽和磁化強度很高(Bs約為1.3T)。其典型成份為Fe73.5Cu1Nb3Si13.5B9稱為"Finemet"。性能最佳的結構為a-Fe(Si)相(12~20nm)鑲嵌在剩余的非晶格基體上。軟磁性能好的原因之一被認為是鐵磁交互作用。單個晶粒的局部磁晶體各向異性被有效地降低。其二是晶化處理后,形成富Si的a-Fe相,他和磁致伸縮系數ls下降到2′10-6。繼Finemet之后,90年代初又發展了新一族納米晶軟磁合金Fe-Zr-(Cu)-B-(Si)系列(稱為""""Nanoperm")。退火后,這類合金形成的bcc相晶粒尺寸為10~20nm,飽和磁化強度可達1.5~1.7T,磁導率達到48000(lkHz)。鐵芯損耗低,例如,Fe86Zr7B6Cu1合金的鐵芯損耗為66mW·g-1(在1T,50Hz條件下),比目前做變壓器鐵芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,實用前景非常誘人。

      4)催化及貯氫性能

      在催化劑材料中,反應的活性位置可以是表面上的團簇原子,或是表面上吸附的另一種物質。這些位置與表面結構、晶格缺陷和晶體的邊角密切相關。由于納米晶材料可以提供大量催化活性位置,因此很適宜作催化材料。事實上,早在術語"納米材料"出現前幾十年,已經出現許多納米結構的催化材料,典型的如Rh/Al2O3、Pt/C之類金屬納米顆粒彌散在情性物質上的催化劑。已在石油化工、精細化工合成、汽車排氣許多場合應用。

      Sakas等報道了納米晶5%(inmass)Li-MgO(平均直徑5.2nm,比表面面積750m2·g-1)的催化活性。它對甲烷向高級烴轉化的催化效果很好,催化激活溫度比普通Li浸滲的MgO至少低200°C,盡管略有燒結發生,納米材料的平均活性也比普通材料高3.3倍。

      Ying及合作者利用惰性氣氛冷凝法制成高度非化學當量的CeO2-x納米晶體,作為CO還原SO2、CO氧化和CH4氧化的反應催化劑表現出很高的活性?;罨瘻囟鹊陀诔毜幕瘜W當量CeO2基材料。例如,選擇性還原SO2為S的反應,可在500°C實現100%轉換,而由化學沉淀得到的超細CeO2粉末,活化溫度高達600°C。摻雜Cu的Cu-CeO2-x納米復合材料可以使SO2的反應溫度降低到420°C。另外,CeO2-x納米晶在SO2還原反應中沒有活性滯后,且具有超常的抗CO2毒化能力。還能使CO完全轉化為CO2的氧化反應在低于100°C時進行,這對冷起動的汽車排氣控制非常有利。值得注意的是這樣的催化劑僅由較便宜的金屬構成,毋須添加資金屬元素。

      FeTi和Mg2Ni是貯氫材料的重要候選合金。其缺點是吸氫很慢,必須進行活化處理,即多次地進行吸氫----脫氫過程。Zaluski等最近報道,用球磨Mg和Ni粉末可直接形成化學當量的Mg2Ni,晶粒平均尺寸為20~30nm,吸氫性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氫只能在高溫下進行(如果氫壓力小于20Pa,溫度必須高于250°C),低溫吸氫則需要長時間和高的氫壓力,例如200°C、120bar(lbar=0.1Mpa),2天。納米晶Mg2Ni在200°C以下,即可吸氫,毋須活化處理。300°C第一次氫化循環后,含氫可達~3.4%(inmass)。在以后的循環過程中,吸氫比普通多晶材料快4倍。納米晶FeTi的吸氫活化性能明顯優于普通多晶材料。普通多晶FeTi的活化過程是:在真空中加熱到400~450℃,隨后在約7Pa的H2中退火、冷卻至室溫再暴露于壓力較高(35~65Pa)的氫中,激活過程需重復幾次。而球磨形成的納米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氫吸收循環。納米晶FeTi合金由納米晶粒和高度無序的晶界區域(約占材料的20%~30%)構成。

      4納米材料應用示例

      目前納米材料主要用于下列方面:

      l)高硬度、耐磨WC-Co納米復合材料

      納米結構的WC-Co已經用作保護涂層和切削工具。這是因為納米結構的WC-Co在硬度、耐磨性和韌性等方面明顯優于普通的粗晶材料。其中,力學性能提高約一個量級,還可能進一步提高。高能球磨或者化學合成WC-Co納米合金已經工業化?;瘜W合成包括三個主要步驟:起始溶液的制備與混和;
      噴霧干燥形成化學性均勻的原粉末;
      再經流床熱化學轉化成為納米晶WC-Co粉末。噴霧干燥和流床轉化已經用來批量生產金屬碳化物粉末。WC-Co粉末可在真空或氫氣氛下液相燒結成塊體材料。VC或Cr3C2等碳化物相的摻雜,可以抑制燒結過程中的晶粒長大。

      2)納米結構軟磁材料

      Finemet族合金已經由日本的HitachiSpecialMetals,德國的VacuumschmelzeGmbH和法國的Imply等公司推向市場,已制造銷售許多用途特殊的小型鐵芯產品。日本的AlpsElectricCo.一直在開發Nanoperm族合金,該公司與用戶合作,不斷擴展納米晶Fe-Zr-B合金的應用領域。

      3)電沉積納米晶Ni

      電沉積薄膜具有典型的柱狀晶結構,但可以用脈沖電流將其破碎。精心地控制溫度、pH值和鍍池的成份,電沉積的Ni晶粒尺寸可達10nm。但它在350K時就發生反常的晶粒長大,添加溶質并使其偏析在晶界上,以使之產生溶質拖拽和Zener粒子打軋效應,可實現結構的穩定。例如,添加千分之幾的磷、流或金屬元素足以使納米結構穩定至600K。電沉積涂層脈良好的控制晶粒尺寸分布,表現為Hall-Petch強化行為、純Ni的耐蝕性好。這些性能以及可直接涂履的工藝特點,使管材的內涂覆,尤其是修復核蒸汽發電機非常方便。這種技術已經作為EectrosleeveTM工藝商業化。在這項應用中,微合金化的涂層晶粒尺寸約為100nm,材料的拉伸強度約為鍛造Ni的兩倍,延伸率為15%。晶間開裂抗力大為改善。

      4)Al基納米復合材料

      Al基納米復合材料以其超高強度(可達到1.6GPa)為人們所關注。其結構特點是在非晶基體上彌散分布著納米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和過渡族金屬(如Fe、Ni)。通常必須用快速凝固技術(直接淬火或由初始非晶態通火)獲得納米復合結構。但這只能得到條帶或霧化粉末。納米復合材料的力學行為與晶化后的非晶合金相類似,即室溫下超常的高屈服應力和加工軟化(導致拉神狀態下的塑性不穩定性)。這類納米材料(或非晶)可以固結成塊材。例如,在略低于非晶合金的晶化溫度下溫擠。加工過程中也可以完全轉變為晶體,晶粒尺寸明顯大干部份非晶的納米復合材料。典型的Al基體的晶粒尺寸為100~200nm,鑲嵌在基體上的金屬間化合物粒子直徑約50nm。強度為0.8~1GPa,拉伸韌性得到改善。另外,這種材料具有很好的強度與模量的結合以及疲勞強度。溫擠Al基納米復合材料已經商業化,注冊為GigasTM。霧化的粉末可以固結成棒材,并加工成小尺寸高強度部件。類似的固結材料在高溫下表現出很好的超塑:在1s-1的高應變速率下,延伸率大于500%。

      5結語

      在過去十多年里,盡管納米材料的研究已經取得了顯著進展,但許多重要問題仍有待探索和解決。諸如,如何獲得清潔、無孔隙、大尺寸的塊體納米材料,以真實地反映納米材料的本征結構與性能?如何開發新的制備技術與工藝,實現高品質、低成本、多品種的納米材料產業化?納米材料的奇異性能是如何依賴于微觀結構(晶粒尺寸與形貌、晶界等缺陷的性質、合金化等)的?反之,如何利用微觀結構的設計與控制,發展具有新穎性能的納米材料,以拓寬納米材料的應用領域?某些傳統材料的局域納米化能否為其注入新的生命力?如何實現納米材料的功能與結構一體化?如何使納米材料在必要的后續處理或使用過程中保持結構與性能的穩定性?等等。這些基本問題是進一步深入研究納米材料及其實用化的關鍵,也是納米材料研究被稱為"高風險與高回報并存"的原因。

      納米材料論文范文第2篇

      表1是納米二氧化硅對抗壓強度的影響。為了體現納米二氧化硅的優勢,用微米二氧化硅作對比試驗。從表1可以看出每添加0.2gal/sk的納米二氧化硅,強度形成速率就會從172psi/hr增大到460psi/hr。從抗壓強度—時間圖的線性部分可以計算強度形成速率。不含納米二氧化硅的成分稱為控體,水泥復合材料的最終強度是控體或控體中加微米二氧化硅的三倍。與控體相比,含有納米二氧化硅的水泥漿的流變性能略高,但仍可澆注和泵送。

      通常情況下,水泥漿中含有不同的添加劑,其大小一般是微米級。添加少量的納米二氧化硅不能顯著影響其力學性質,因為一旦這些粒子聚集在一起就不能達到預期的效果。在攪拌水泥漿的過程中,向其中加入納米二氧化硅、膠體和水。由于都是納米級物質—納米二氧化硅顆粒和膠體顆粒有可能結合在一起,將有利于提高早期強度。

      油井水泥主要包括四種固相:C3A,C4AF,C3S和C2S。其中C3A,C4AF控制水泥的流變和凝膠過程,C3S和C2S控制水泥的抗壓強度。C3S和C2S與水相互作用時,它們形成C-S-H凝膠、CH(氫氧化鈣)。C-S-H凝膠作為水泥粘結劑,能鞏固水泥基體,提高水泥強度,加入納米二氧化硅能加速C-S-H膠結,加速獲得早期強度。此外在固相顆粒發生化學反應之前,二氧化硅顆粒很細小能填充到固相顆粒中,使其成為稠密的固體基質。

      H級優質水泥,消泡劑0.05gal/sk,穩定劑0.2gal/sk,分散劑0.143gal/sk,密度16.4lbm/gal,收益率1.1ft3/sk納米二氧化硅與其它添加劑形成協同作用,不會干擾其它添加劑的作用。按照稠化時間和泵入時間調整緩凝劑的量,能改進其力學性能。在泵入時間相近(一種大約6-7小時,另一種大約10-11小時),通過改變緩凝劑和納米二氧化硅的量,設計了兩種不同的水泥漿。從這兩種情況中可看出有含有納米二氧化硅的水泥漿較控體水泥漿能形成較高的早期強度和較高的最終強度。

      納米材料對漏失量的影響。單獨使用納米材料時可以減少漏失量,與傳統防漏失劑配合使用時,表現為協同作用,也能輔助減少漏失量。這可能是因為它能填充水泥顆粒中的小縫隙。此外,研究結果還表明納米二氧化硅用量一定時,各種溫度下納米二氧化硅的強度都有所改善,并且這種性能不會隨溫度改變。由于不受溫度影響,使得這種材料能適應各種水泥漿設計方案和現場情況。

      二、結論

      納米材料論文范文第3篇

      1.1以單細胞生物體為模板制備納米材料細胞是生物體結構和功能的基本單位,而細胞表面的細胞膜是由磷脂雙分子層和鑲嵌其中的蛋白質等構成的。不同的細胞有著獨特精制的外形結構和功能化的表面,以單細胞為模板可以合成不同生物細胞形貌的納米結構。

      1.1.1以原核細胞為模板制備納米材料細菌和放線菌被廣泛應用于金屬納米顆粒的合成,其中一個原因就是它們相對易于操作。最早著手研究的Jha等[2]用乳酸桿菌引導在室溫下合成了尺寸為8~35nm的TiO2納米粒子,并提出了與反應相關的機理。隨著納米材料的生物合成的逐漸發展,現在已成功合成了以不同菌為模板的不同形貌的納米材料。Klaus等[3]在假單胞菌(Pseudomonasstutzeri)的細胞不同結合位點處制備并發現了三角形,六邊形和類球形的Ag納米粒子,其粒徑達200nm。Ahmad等[4]從一種昆蟲體內提取了比基尼鏈霉菌(Streptomycesbikiniensis),并以此制備出3~70nm的球形Ag納米顆粒。Nomura等[5]以大腸桿菌為模板成功制備出平均孔徑為2.5nm的桿狀中空SiO2,其比表面積達68.4m2/g。

      1.1.2以真核細胞為模板制備納米材料真核細胞相比較原核細胞種類更為廣泛,培養更為方便,所以以此為模板的生物合成的研究更多。最簡單的單細胞真核生物小球藻可以富集各種重金屬,例如鈾、銅、鎳等[6]。Fayaz等[7]以真菌木霉菌(Trichodermaviride)為模板在27℃下合成了粒徑為5~40nm的Ag納米粒子,并且發現青霉素,卡那霉素和紅霉素等的抗菌性在加入該Ag納米粒子后明顯提高。Lin等[8]發現HAuCl4中金離子在畢赤酵母(Pichiapastoris)表面先發生了生物吸附然后進行生物還原,從而得到Au納米粒子。研究發現金離子被酵母菌表面的氨基、羥基和其它官能團首先還原成一價金離子,并進一步被還原成Au納米顆粒。Mishra等[9]以高里假絲酵母(Candidaguilliermondii)為模板合成了面心立方結構的Au和Ag納米粒子,兩種納米粒子對金黃色葡萄球菌有很高的抗菌性,但所做的對比試驗表明化學方法合成的兩種粒子對致病菌均不具有抗菌性。Zhang等[10]則以酵母菌為模板合成了形貌均一Co3O4修飾的ZnO中空結構微球。尖孢鐮刀菌(Fusariu-moxysporum)[11]可以在其自身表面將米糠的無定型硅生物轉化成結晶SiO2,形成2~6nm的準球形結構。

      1.2以多細胞生物體為模板制備納米材料雖然以單細胞為模板制備的納米粒子的單分散性較好,但是要涉及到生物體復雜的培養過程及后續處理,而以多細胞生物體為模板的制備方法就顯得更加方便簡捷。

      1.2.1以多細胞植物體為模板制備納米材料地球上的植物種類很多,以其為模板的納米材料的生物合成也就多種多樣。多數情況下是將植物體培養在含有金屬離子的溶液中,然后將植物體除去便可得到復制了植物體微結構的納米材料。Rostami等[12]將油菜和苜蓿的種子培養在含有Au3+的溶液中,將金離子變成納米Au粒子,其大小分別是20~128nm和8~48nm。Dwivedi等[13]以藜草(Chenopodiumalbum)為模板分別制備出平均粒徑為12nm和10nm的Ag和Au納米晶體,并認為藜草中天然的草酸對于生物還原起著重要作用。Cyganiuk等[14]以蒿柳(Salixviminalis)和金屬鹽為原料制備出碳基混合材料LaMnO3。將蒿柳培植在含有金屬鹽的溶液中,金屬鹽離子順著植物組織進行傳輸,進而滲透其中。然后將木質素豐富的植物體部位在600~800℃范圍進行煅燒碳化,得到的產物對正丁醇轉化成4-庚酮有很好的催化效果。黃保軍等[15]以定性濾紙通過浸漬和煅燒等一系列過程仿生合成了微納米結構的Fe2O3,并且對其形成機理進行了初步探討。Cai等[16]以發芽的大豆為模板,制備出室溫下便有超順磁性的Fe3O4納米粒子,其平均粒徑僅為8nm。王盟盟等[17]以山茶花花瓣為模板通過浸漬煅燒制備出CeO2分層介孔納米片,并且在可見光波段有很好的催化活性。

      1.2.2以多細胞動物體為模板制備納米材料以多細胞動物體為模板的納米材料的制備比較少,其中以Anshup等[18]的研究較為突出。他們分別試驗了人體的癌變宮頸上皮細胞、神經細胞和未癌變正常的人類胚胎腎細胞。這些人體細胞在模擬人體環境的試管中進行培養,培養液中含有1mmol/L的HAuCl4。最終得到20~100nm的Au納米顆粒。細胞核和細胞質中都有Au納米粒子沉積,并且發現細胞核周圍的Au粒子粒徑比細胞質中的小。

      2以生物體提取物或組成成分中的有效成分制備納米材料

      生物體中含有很多還原穩定性成分,如果將這些成分提取出來,就可以脫離生物體原有形貌的束縛,得到綠色無污染的生物還原劑,進而以其制備納米材料。很多糖類,維生素,纖維素等生物組成成分也被證實有很好的生物還原穩定作用,這就使得納米材料的綠色生物合成更加方便快捷。

      2.1以微生物提取物為有效成分制備納米材料以微生物的提取物為活性成分制備的納米材料多數是納米Ag和納米Au,而且這兩種粒子具有殺菌的效果。而以微生物提取物制備的納米材料粒徑更小,并且普遍也比一般化學方法合成的粒子有更好的殺菌效果[9]。Gholami-Shabani等[19]從尖孢鐮刀菌(Fusariumoxysporum)中提取了硝酸鹽還原酶,并用其還原得到平均粒徑為50nm的球形納米Ag顆粒,并且對人類的病原菌和細菌有很好的抗菌效果。Wei等[20]和Velmurugan等[21]分別用酵母菌和枯草桿菌提取液成功合成了不同粒徑及形貌的納米Ag顆粒。提取物中的還原性酶是促進反應進行的重要成分。Inbakandan等[22]將海洋生物海綿中提取物與HAuCl4反應制備得到粒徑為7~20nm的納米Au顆粒,主要得益于其中的水溶性有機還原性物質。Song等[23]則從嗜熱古菌(hyperther-mophilicarchaeon)中提取出高耐熱型騰沖硫化紡錘形病毒1(Sulfolobustengchongensisspindle-shapedvirus1)的病毒蛋白質外殼。并且發現實驗條件下在沒有遺傳物質時其蛋白質外殼仍可自組裝成輪狀納米結構。與TiO2納米粒子呈現出很好的親和能力,在納米材料的生物合成中將有廣闊的應用前景。

      2.2以植物提取物為有效成分制備納米材料生物提取物制備納米材料的研究最多的是針對植物提取物的利用,因為地球上植物種類眾多,為納米材料的生物合成提供了眾多可能性。Ahmed等[24]以海蓮子植物(Salicorniabrachiata)提取液還原制得Au納米顆粒,其粒徑為22~35nm。制備出的樣品對致病菌有很大的抗菌性,而且能催化硼氫化鈉還原4-硝基苯酚為4-氨基苯酚,也可催化亞甲基藍轉化成無色亞甲藍。Velmurugan等[25]和Kulkarni[26]分別用腰果果殼提取液和甘蔗汁成功制備出納米Ag和納米Ag/AgCl復合顆粒,其均有很好的殺菌效果。Sivaraj等[27]用一種藥用植物葉子(Tabernaemontana)的提取液制備了對尿路病原體大腸桿菌有抑制作用的球形CuO納米顆粒,其平均粒徑為48nm。

      2.3以生物組成成分為有效成分制備納米材料碳水化合物是生物體中最豐富的有機化合物,分為單糖、淀粉、纖維素等。其獨特的結構和成分可以用來合成各種結構的納米材料。Panacek等[28]測試了兩種單糖(葡萄糖和半乳糖)和兩種二糖(麥芽糖和乳糖)對[Ag(NH3)2]+的還原效果,其中由麥芽糖還原制備的納米Ag顆粒的平均粒徑為25nm,并且對包括耐各種抗生素的金黃葡萄球菌在內的革蘭氏陽性菌和革蘭氏陰性菌有很好的抑制作用。Gao等[29]和Abdel-Halim等[30]分別用淀粉和纖維素還原硝酸銀制得了不同粒徑的Ag納米粒子,對一些菌體同樣有很好的抗菌性。維生素是人體不可缺少的成分,在人類機體的新陳代謝過程中發揮著重要作用,是很好的穩定劑和還原劑。Hui等[31]用維生素C還原制備了Ag納米顆粒修飾的氧化石墨烯復合材料,將加有維生素C的AgNO3和氧化石墨烯溶液進行超聲反應,得到的Ag納米顆粒平均粒徑為15nm,并附著在氧化石墨烯納米片表面。Nadagouda等[32]用維生素B2為還原活性成分室溫下合成了不同形貌(納米球、納米線、納米棒)的納米Pd。并且發現在不同的溶劑中制備的納米材料的形貌和大小不同。

      3以病毒為模板制備納米材料

      病毒本身沒有生物活性,可以寄宿于其它宿主細胞進行自我復制,其實際上是一段有保護性外殼的DNA或RN段,大小通常處于20~450nm之間,其納米級的大小使得以其為模板更易于制備出納米材料。Shenton等[33]以煙草花葉病毒為模板制備了Fe3O4納米管。因為煙草花葉病毒是由呈螺旋形排列的蛋白質單元構成,內部形成中空管。以此為模板制備出來的Fe3O4也復制了這一結構特點而呈現管狀結構。由于煙草花葉病毒的尺寸小但穩定性高,使得它被頻頻用來作為納米材料生物合成的骨架[34-36]。Dang等[37]則以轉基因M13病毒為模板制備了單壁碳納米管-TiO2晶體核殼復合納米材料。實驗發現以此為光陽極的染料敏化太陽能電池的能量轉換效率達10.6%。

      4結論

      納米材料論文范文第4篇

      1堿性鋅錳電池材料

      11納米級γ-MnO2

      夏熙等利用溶膠凝膠法、微乳法、低熱固相反應法合成制得納米級γMnO2用作堿錳電池正極材料。發現純度不佳,但與EMD以最佳配比混合,可大大提高第2電子當量的放電容量,也就是可出現混配效應。若制得的納米γMnO2純度高時,本身的放電容量即優于EMD。

      12摻Bi改性納米MnO2

      夏熙等通過加入Bi2O3合成得到改性MnO2,采用納米級和微米級改性摻BiMnO2混配的方法,放電容量都有不同程度的提高,并且存在一個最佳配比。通過摻Bi在充放電過程中形成一系列不同價態的BiMn復合物的共還原和共氧化,有效抑制Mn3O4的生成,可極大地改善電極的可充性。

      13納米級α-MnO2

      采用固相反應法合成不含雜質陽離子的納米αMnO2,粒徑小于50nm,其電化學活性較高,放電容量比常規粒徑EMD更大,尤其適于重負荷放電,表現出良好的去極化性能,具有一定的開發和應用潛力。

      14納米級ZnO

      堿錳電池中的電液要加入少量的ZnO,以抑制鋅負極在電液中的自放電。ZnO在電液中的分散越均勻,越有利于控制自放電。納米ZnO在我國已應用于醫藥等方面。由于堿錳電池朝著無汞化發展,采用納米ZnO是可選擇的方法之一。應用的關鍵是要注意納米ZnO材料的表面改性問題。

      15納米級In2O3

      In2O3是堿錳電池的無機代汞緩蝕劑的選擇之一,目前已開發并生產出無汞堿錳電池用高純納米In2O3,該材料具有比表面積大,分散性好,緩蝕效果更佳的特點,應用于無汞堿錳電池具有良好的抑制氣體產生的作用。

      2在MH/Ni電池中的應用

      21納米級Ni(OH)2

      周震等人用沉淀轉化法制備了納米級Ni(OH)2,并發現納米級Ni(OH)2比微米級Ni(OH)2具有更高的電化學反應可逆性和更快速的活化能力。采用該材料制作的電極在電化學氧化還原過程中極化較小,充電效率高,活性物質利用更充分,而且顯示出放電電位較高的特點。趙力等人用微乳液法制備納米βNi(OH)2,粒徑為40~70nm。該方法較易控制納米顆粒粒徑大小,并且所制得的納米材料呈球型或橢球形,適用于某些對顆粒狀有特殊要求的場合,如作為氫氧化鎳電極的添加劑,按一定比例摻雜,可使Ni(OH)2的利用率顯著提高,尤其當放電電流較大時,利用率可提高12%。22納米晶貯氫合金

      陳朝暉等利用電弧熔煉高能球磨法制備出納米晶LaNi5[6],平均粒徑約20nm,采用該材料制備的電極與粗晶LaNi5制備的電極相比,具有相當的放電容量,更好的活化特性,但其循環壽命較短。

      3鋰離子電池材料

      31陰極材料———納米LiCoO2

      夏熙等用凝膠法制備的納米LiCoO2,放電容量為103mAh/g,充電容量為109mAh/g,長平臺在39V處,有明顯提高放電平臺的效果,循環穩定性也大為提高,但未見有混配效應。低熱固相反應法合成納米LiCoO2,發現了混配效應:以一定比例與常規LiCoO2進行混配,做成電池測試,充電容量可達132mAh/g,放電容量為125mAh/g,放電平臺在39V,由于納米顆粒增大了比表面積,令Li+更易嵌入和脫出,削弱了極化現象,循環性能比常規LiCoO2明顯提高,顯示出較好的性能。

      32納米陽極材料

      中國科學院成都有機化學研究所“碳納米管和其它納米材料”的研究工作取得了階段性成果。制得的碳納米管層間距離為034nm,略大于石墨的層間距0335nm,這有利于Li+的嵌入和脫出,它特殊的圓筒狀構型不僅可使Li+從外壁和內壁兩方面嵌入,而且可防止因溶劑化Li+的嵌入引起石墨層剝離而造成負極材料的損壞。實驗表明,用該材料作為添加劑或單獨用作鋰離子電池的負極材料均可顯著提高負極材料的嵌Li+容量和穩定性。中國科學院金屬研究所等用有機物催化熱解法制備出單壁納米碳管和多壁納米碳管。他們的研究表明用納米碳管作為電極,比容量可達到1100mAh/g,且循環性能穩定。香港科技大學用多孔的沸石晶體作載體,首次成功研制出尺寸最小,全球最細且排列規整的04nm單壁納米碳管,繼而又發現在超導溫度15℃以下呈現出特殊的一維超導特性。

      4電容器材料

      由可充電電池和電容器共同組合的復合電源系統引起了人們的濃厚興趣,特別是環保電動汽車研究的興起,這種復合電源系統可在汽車啟動、爬坡、剎車時提供大功率電源,因而可以降低電動車輛對蓄電池大功率放電的限制要求,大大延長蓄電池循環使用壽命,從而提高電動汽車的實用性。近年來以納米碳管為代表的納米碳材料的研究和作為電極材料的應用,為更高性能的電化學超級電容器的研究開辟了新的途徑。清華大學用催化裂解丙烯和氫氣混合氣體制備碳納米管原料,再采用添加粘結劑或高溫熱壓的工藝手段制備碳納米管固體電極,通過適當的表面處理,制得的碳納米管電極具有極高的比表面積利用率。用納米碳管和RuO2的復合電極制備雙電層法拉第電容器,在納米碳管比表面積為150m2/g時,電容量可達20F/g左右。清華大學已經制備出電容量達100F的實驗室樣品。在充分利用納米材料的表面特性和中空結構上,納米碳管是目前最理想的超級電容器材料。

      5結束語

      a材料的先進性必然會推動電池的先進性,因此納米材料技術在電化學領域具有十分廣闊的前景,不僅可使傳統的電池性能達到一個新的高度,更有望開發出新型的電源。

      納米材料論文范文第5篇

      1.1藥物載體

      許多藥物都有細胞毒性,在殺死病毒細胞的同時,也會對正常細胞造成損傷。因而,理想的藥物載體不僅應有較好的生物相容性、較高的載藥率,還應具有靶向性,即到達目標病灶部位才釋放藥物分子。無機納米材料的大小和表面的電荷等理化性質決定了納米材料的性能,研究這些可控特性可應用在生物醫學領域中。例如,用多孔硅作為藥物載體遞送柔紅霉素,治療視網膜疾病持續時間從幾天延長到3個月。通過調控將納米粒子孔徑從15nm變為95nm,使柔紅霉素的釋放率增大了63倍,從而調控藥物的釋放。用介孔二氧化硅納米粒子運載化療藥物、探針分子向腫瘤細胞進行遞送,可用于癌癥等疾病的靶向性治療和早期診斷。介孔二氧化硅在藥物傳輸、靶向給藥、基因轉染、組織工程、細胞示蹤、蛋白質固定與分離等方面有廣泛的應用。碳納米管及其衍生材料可開發用于電敏感的透皮藥物釋放,又可作藥物載體進行持續性釋放。比如,用超支化聚合物修飾碳納米管,可以從復合物的羥基末端聚集活性基團,從而增強溶解性能,作為抗癌的藥物載體,也可以用作藥物緩釋載體。用聚乙烯亞胺修飾多壁碳納米管,分散性好,能降低對細胞的毒性,進一步結合在殼聚糖/甘油磷酸鹽上,能增加凝膠的機械強度。同時,改變溶液的pH值、溫度等來構建具有雙緩釋功能的溫敏性凝膠,能減少凝膠的突釋現象。納米鉆石(dND)裝載化療藥物具有較低的毒性和較高的生物兼容性。將葉酸等靶向分子修飾納米鉆石表面,用于裝載抗癌藥物,以H2N-PEG-NH2作為橋梁分子,形成納米靶向載藥系統,對C6細胞具有靶向作用,為研制腫瘤靶向治療提供了參考依據。為了避免被單核細胞、巨噬細胞系統等非特異性吸收,并讓藥物優先進入腫瘤細胞,用超支化縮水甘油(PG)修飾納米鉆石得到dND-PG,有較好的生物相容性,能避免被正常細胞的巨噬細胞非特異性攝取。加載抗癌藥物阿霉素顯示出對腫瘤細胞具有選擇性的毒性作用,可作為腫瘤藥物載體,對腫瘤細胞進行選擇性給藥。將藥物分子插入LDHs的層間形成藥物-LDHs的納米雜化物,藥物與LDHs層間的相互作用以及空間位阻效應能有效地控制藥物釋放,減少藥物發生酶解作用。LDHs表面存在大量的羥基,便于進行表面功能化修飾,增強靶向性,避免被巨噬細胞吞噬而從人體內清除,提高藥物的輸送效率。LDHs適合裝載不同類型的藥物,將藥物插入到LDHs的層間結構,藥物以陰離子形式裝載并被控釋。通過共沉淀法在LDHs層間成功地嵌入維生素C,維生素C的陰離子垂直插于LDHs層間,熱穩定性顯著增強。通過離子交換反應來釋放維生素C,延長釋放時間。

      1.2蛋白質載體

      納米材料在診斷、藥物輸送、生物功能材料、生物傳感器等方面得到了迅猛的發展,出現了疾病治療、診斷、造影成像等多種功能的組合。無機納米材料在生物大分子藥物的載體,包括運載蛋白質、多肽、DNA和siRNA等方面的研究較多。納米多孔硅有較好的生物相容性、生物可降解性和可調控的納米粒徑,可作為藥物輸送系統。殼聚糖修飾多孔硅后可用于運載口服給藥的胰島素,改善胰島素的跨細胞滲透,增加與腸道細胞黏液層的表面接觸,提高細胞的攝入,可用于口服遞送蛋白質和多肽。納米羥基磷灰石與蛋白質分子有高親和性,可用作蛋白質藥物緩釋載體,能提供鈣離子,造成腫瘤細胞過度攝入,從而抑制腫瘤細胞活性,誘導腫瘤細胞凋亡。

      1.3基因載體

      基因治療是遺傳性疾病的臨床治療策略,主要依賴于發展多樣性的載體。無機納米材料用于基因療法是利用無機粒子和可生物降解的多聚陽離子合成新型的納米藥物載體,如介孔二氧化硅作為基因載體可用于腫瘤治療,促進體外siRNA的遞送。乙醛修飾的胱氨酸具有自身熒光的特點,可對pH值和谷胱甘肽進行響應。通過熒光標記類樹狀大分子的二氧化硅納米載體具有分級的孔隙,不僅毒性低、基因裝載率高,轉染率也較高。引發谷胱甘肽二硫鍵裂解,可促進質粒DNA(pDNA)釋放,并能使用自發熒光來實時示蹤。又如,通過π-π共軛、靜電作用等非共價鍵作用力結合,能將DNA、RNA等生物大分子和化學藥物固定在氧化石墨烯上。

      1.4骨移植

      臨床上可用自體骨移植來治療創傷、感染、腫瘤等造成的骨缺損,由于骨移植的來源有限,且手術時間長,易導致失血過多和供骨區并發癥等,應用受到限制。將異體骨用作骨移植,則存在免疫排斥反應,且易被感染。而人工骨同自體骨有相近的療效,人工骨材料可采用鈦、生物陶瓷、納米骨、3D模擬人工骨髓等納米材料。例如,納米二氧化硅可替代骨組織,促進人工植入材料與肌肉組織融合。納米羥基磷灰石與人體內的無機成分相似,其粒子有小尺寸效應、量子效應及表面效應等,可用作牙種植體或作為骨骼材料,能避免產生排斥反應,促進血液循環,促進人體骨組織的修復、整合和骨缺損后的治愈。

      1.5臨床診斷和治療

      磁性氧化鐵納米粒子可作為造影劑用于腫瘤診斷中,對腫瘤分子產生磁共振分子影像或多模態腫瘤分子影像,也可用于循環腫瘤細胞的分離、富集。免疫磁分離法基于磁性雜化材料可導電,在外部磁場下積累,可用于臨床熱療。磁熱療以磁流體形式進入腫瘤組織,利用腫瘤細胞與正常細胞之間不同的熱敏感度,將外部磁場產生的磁能轉化成熱能從而殺死腫瘤細胞。磁性納米粒子還可用于生物傳感器中,利用磁現象和納米粒子從液相中分離并捕獲生物分子。用綠色熒光蛋白標記,形成溫敏的磁性納米固相生物傳感器,用磁性材料制成固相生物傳感器的支架,在磁場作用下,響應更快,表面易于更新,可用于免疫診斷。磁性納米氧化鐵作為臨床應用的磁性納米材料,受到人們的廣泛關注。Fe3O4和γ-Fe2O3的特殊磁性質使其在靶向腫瘤藥物載體、磁療、熱療、核磁共振成像、生物分離等生物醫學領域中得以應用。用無機納米材料制作激發熒光探針進行臨床診斷,如用介孔二氧化硅制成的細胞熒光成像探針利用量子點良好的光穩定性、較長的熒光壽命和較高的生物相容性,結合介孔二氧化硅可特異性地識別Ramos細胞的特點,并用激光共聚焦顯微鏡對Ramos細胞進行熒光成像,實現了對腫瘤細胞的早期診斷、檢測成像。富勒烯特殊的結構和性質使其可以廣泛地應用于光熱治療、輻射化療、癌癥治療等醫學領域,也可作為核磁共振成像的造影劑用于臨床診斷。但富勒烯不溶于水,對生物體存在潛在的毒性,限制了其在臨床的應用。富勒烯結合含羥基的親水性分子可改善其溶解性,羥基化富勒烯無明顯毒性,可作為抗氧化劑。聚羥基富勒烯利用近紅外光激活體內的納米材料,用光熱對腫瘤細胞定位,避免了金納米粒子、碳納米管等在體內造成聚積,利用免疫刺激作用來抑制腫瘤細胞的轉移、生長,從而減小腫瘤的尺寸,最終造成腫瘤細胞凋亡。因此,改造碳納米結構,在成像、吸附、藥物裝載與靶向運輸等生物醫學工程方面有潛在的應用價值。銀納米粒子殺菌活性遠高于銀離子,在殺菌抑菌方面得到廣泛的應用,可用于外科手術中的傷口愈合、藥學、生命科學等生物和臨床醫學領域。金納米粒子有較好的生物相容性,功能化的金納米粒子可用于生物分析、藥物檢測、臨床診斷等生物醫藥領域,可作為納米探針檢測重金屬離子、三聚氰胺等小分子,也可檢測DNA、蛋白質等生物大分子,還可以用于對細胞表面和細胞內部的多糖、核酸、多肽等的精確定位。鎳納米粒子固定在海藻酸水凝膠中,通過熱敏感粒子與鎳磁納米粒子交聯形成囊狀結構,組成熱磁雙敏感的磁性納米粒子。在交變磁場下緩慢釋放水凝膠中的鎳納米粒子,通過遠程調控來激發水凝膠中成纖維細胞的凋亡。無機納米材料的類別不同,在尺寸、形貌上有很大的變動范圍,因其核心材料的量子特性,已日益成為涉及臨床診斷、成像和治療的手段,為納米材料在生物醫學上的應用提供更多的可能。

      2展望

      納米技術作為新時代的疾病治療模式,為未來的臨床用藥提供了新的可能,在生物醫學的應用上有很大的前景。目前,癌癥治療主要包括手術、放療和化療等手段,而藥物劑量增多會造成副作用。納米粒子可以作為靶向藥物載體、成像造影劑、化療、熱療、磁療系統,可通過血腦屏障,在治療神經系統疾病中有很大的潛力,有望成為攻克癌癥的新手段。無機納米材料在藥物載體、臨床診斷和治療等方面有廣闊的應用前景,但目前的研究大多處于實驗階段。無機納米材料在生物醫學應用中有待解決的問題包括:

      (1)提高疾病治療的針對性、靶向性和可調控性;

      (2)使無機納米材料相對固定在腫瘤細胞表面,不至于擴散到正常組織,從而提高腫瘤部位的有效濃度,減少毒副作用;

      (3)納米材料有潛在的毒性,可降低納米材料的毒副作用以達到臨床應用的標準;

      (4)尋找優質材料,優化結構,提高材料的生物相容性、生物安全性,并針對不同的藥物溶解性設計特定的載體和功能材料骨架,增加細胞的攝取和利用;

      (5)生物合成方法與其他合成方法相結合,無機與有機材料組合成復合材料,組裝成集檢測與治療于一體、多靶點的功能材料;

      国产另类无码专区|日本教师强伦姧在线观|看纯日姘一级毛片|91久久夜色精品国产按摩|337p日本欧洲亚洲大胆精

      <ol id="ebnk9"></ol>