冪函數知識點第1篇一、一次函數定義與定義式:自變量x和因變量y有如下關系:y=kx+b則此時稱y是x的一次函數。特別地,當b=0時,y是x的正比例函數。即:y=kx(k為常數,k≠0)二、一次函數的性下面是小編為大家整理的冪函數知識點8篇,供大家參考。
一、一次函數定義與定義式:
自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質:
的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
四、確定一次函數的表達式:
已知點A(x1,y1);B(x2,y2),請確定過點A、B的一次函數的表達式。
(1)設一次函數的表達式(也叫解析式)為y=kx+b。
(2)因為在一次函數上的任意一點P(x,y),都滿足等式y=kx+b。所以可以列出2個方程:y1=kx1+b……①和y2=kx2+b……②
(3)解這個二元一次方程,得到k,b的值。
(4)最后得到一次函數的表達式。
定義:
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是r,如果q是偶數,函數的定義域是[0,+∞),工作總結《冪函數知識點總結》。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數??偨Y起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的"所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
一、高中數學函數的有關概念
高中數學函數函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對于函數A中的任意一個數x,在函數B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從函數A到函數B的一個函數.記作:y=f(x),x∈其中,x叫做自變量,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的函數{f(x)|x∈A}叫做函數的值域.
注意:
函數定義域:能使函數式有意義的實數x的函數稱為函數的定義域。
求函數的定義域時列不等式組的主要依據是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數不小于零;
(3)對數式的真數必須大于零;
(4)指數、對數式的底必須大于零且不等于
(5)如果函數是由一些基本函數通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的函數.
(6)指數為零底不可以等于零,
(7)實際問題中的函數的定義域還要保證實際問題有意義.
?相同函數的判斷方法:①表達式相同(與表示自變量和函數值的字母無關);②定義域一致(兩點必須同時具備)
高中數學函數值域:先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數y=f(x),(x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的函數C,叫做函數y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.
(2)畫法
A、描點法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱變換
高中數學函數區間的概念
(1)函數區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
映射
一般地,設A、B是兩個非空的函數,如果按某一個確定的對應法則f,使對于函數A中的任意一個元素x,在函數B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從函數A到函數B的一個映射。記作“f(對應關系):A(原象)B(象)”
對于映射f:A→B來說,則應滿足:
(1)函數A中的每一個元素,在函數B中都有象,并且象是唯一的;
(2)函數A中不同的元素,在函數B中對應的象可以是同一個;
(3)不要求函數B中的每一個元素在函數A中都有原象。
高中數學函數之分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。
函數的單調性(局部性質)
(1)增函數
設函數y=f(x)的定義域為I,如果對于定義域I內的某個區間D內的任意兩個自變量x1,x2,當x1
如果對于區間D上的任意兩個自變量的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:函數的單調性是函數的局部性質;
(2)圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那么說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3)函數單調區間與單調性的判定方法
(A)定義法:
任取x1,x2∈D,且x1
作差f(x1)-f(x2);
變形(通常是因式分解和配方);
定號(即判斷差f(x1)-f(x2)的正負);
下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”
注意:函數的單調區間只能是其定義域的子區間,不能把單調性相同的區間和在一起寫成其并集.
函數的奇偶性(整體性質)
(1)偶函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函數.
(2)奇函數
一般地,對于函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函數.
(3)具有奇偶性的函數的圖象的特征
偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
利用定義判斷函數奇偶性的步驟:
首先確定函數的定義域,并判斷其是否關于原點對稱;
確定f(-x)與f(x)的關系;
作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函數;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函數.
注意:函數定義域關于原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關于原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;(3)利用定理,或借助函數的圖象判定.
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變量之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2)求函數的解析式的主要方法有:
1)湊配法
2)待定系數法
3)換元法
4)消參法
函數最大(小)值(定義見課本p36頁)
利用二次函數的性質(配方法)求函數的最大(小)值
利用圖象求函數的最大(小)值
利用函數單調性的判斷函數的最大(小)值:
如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);
如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);.
1、回歸課本,重視基礎,注重預習
數學的基本概念、定義、公式,數學知識點的聯系,基本的數學解題思路與方法,是第一輪復習的重中之重。
回歸課本,自已先對知識點進行梳理,確?;靖拍?、公式等牢固掌握,要扎扎實實,不要盲目攀高,欲速則不達。復習課的容量大、內容多、時間緊。要提高復習效率,必須使自己的思維與老師的思維同步。而預習則是達到這一目的的重要途徑。沒有預習,聽老師講課,會感到老師講的都重要,抓不住老師講的重點;而預習了之后,再聽老師講課,就會在記憶上對老師講的內容有所取舍,把重點放在自己還未掌握的內容上,從而提高復習效率。預習還可以培養自己的自學能力。
2、提高聽課效率,勤動手,多動腦
高三的課只有兩種形式:復習課和評講課,到高三所有課都進入復習階段,通過復習,學生要能檢測出知道什么,哪些還不知道,哪些還不會,因此在復習課之前一定要有自己的思考,聽課的目的就明確了。
現在學生手中都會有一種復習資料,在老師講課之前,要把例題做一遍,做題中發現的難點,就是聽課的重點;對預習中遇到的沒有掌握好的有關的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;體會分析問題的思路和解決問題的思想方法,堅持下去,就一定能舉一反三,提高思維和解決問題的能力。
此外還要特別注意老師講課中的提示。作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等做出簡單扼要的記錄,以便復習,消化,思考。習題的解答過程留在課后去完成,每記的地方留點空余的地方,以備自已的感悟。
3、適量訓練
學好數學要做大量的題,要提高解題的效率,做題的目的在于檢查你學的知識,方法是否掌握得很好。如果你掌握得不準,甚至有偏差,那么多做題的結果,反而鞏固了你的缺欠,因此,要在準確地把握住基本知識和方法的基礎上做大量的練習是必要的。
(1)要有針對性地做題,典型的題目,應該規范地完成,同時還應了解自己,有選擇地做一些課外的題;
(2)要循序漸進,由易到難,要對做過了典型題目有一定的體會和變通,即按“學、練、思、結”程序對待典型的問題,這樣做能起到事半功倍的效果。
(3)是無論是作業還是測驗,都應把準確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是學好數學的重要問題。
(4)獨立思考是數學的靈魂,遇到不懂或困難的問題時,要堅持獨立思考,不輕易問人,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,而是要自己先認真地思考一下,依靠自己的努力克服其中的某些困難,經過很大的努力仍不能解決的問題,再虛心請教別人,請教時,不要把問題問得太透。學會提出問題,提出問題往往比解決問題更難,而且也更重要。
(5)加強做題后的反思,解題不是目的,我們是通過解題來檢驗我們的學習效果,發現學習中的不足的,以便改進和提高。因此,解題后的總結至關重要,這正是我們學習的大好機會,對于一道完成的題目,有以下幾個方面需要總結:
①在知識方面,題目中涉及哪些概念、定理、公式等基礎知識,在解題過程中是如何應用這些知識的。
②在方法方面:如何入手的,用到了哪些解題方法、技巧,自己是否能夠熟練掌握和應用。
③能不能把解題過程概括、歸納成幾個步驟(比如用數學歸納法證明題目就有很明顯的三個步驟)。
4、養成良好的解題習慣
如仔細閱讀題目,看清數字,規范解題格式,部分同學(尤其是腦子比較好的同學)自己感覺很好,平時做題只是寫個答案,不注重解題過程,書寫不規范,在正規考試中即使答案對了,由于過程不完整被扣分較多。
部分同學平時學習過程中自信心不足,做作業時免不了互相對答案,也不認真找出錯誤原因并加以改正。這些同學到了考場上常會出現心理性錯誤,導致“會而不對”,或是為了保證正確率,反復驗算,浪費很多時間,影響整體得分。這些問題都很難在短時間得以解決,必須在平時下功夫努力改正?!皶粚Α笔歉呷龜祵W學習的大忌,常見的有審題失誤、計算錯誤等,平時都以為是粗心,其實這是一種不良的學習習慣,必須在第一輪復習中逐步克服,否則,后患無窮。
可結合平時解題中存在的具體問題,逐題找出原因,看其是行為習慣方面的原因,還是知識方面的缺陷,再有針對性加以解決。必要時作些記錄,也就是錯題本,每位學生必備的,以便以后查詢。
5、分析試卷,將存在的問題分類
每次考試結束試卷發下來,要認真分析得失,總結經驗教訓。特別是將試卷中出現的錯誤進行分類,可如下分類:
第一類問題遺憾之錯。就是分明會做,反而做錯了的題;比如說,“審題之錯”是由于審題出現失誤,看錯數字等造成的;“計算之錯”是由于計算出現差錯造成的;“抄寫之錯”是在草稿紙上做對了,往試卷上一抄就寫錯了、漏掉了;“表達之錯”是自己答案正確但與題目要求的表達不一致,如角的單位混用等。出現這類問題是考試后最后悔的事情。
消除遺憾要消除遺憾必須弄清遺憾的原因,然后找出解決問題的辦法,如“審題之錯”,是否出在急于求成?可采取“一慢一快”戰術,即審題要慢、答題要快?!坝嬎沐e誤”,是否由于草稿紙用得太亂等。建議將草稿紙對折分塊,每一塊上演算一道題,有序排列便于回頭查找?!俺瓕懼e”,可以用檢查程序予以解決?!氨磉_之錯”,注意表達的規范性,平時作業就嚴格按照規范書寫表達,學習高考評分標準寫出必要的步驟,并嚴格按著題目要求規范回答問題。
第二類問題似非之錯。記憶的不準確,理解的不夠透徹,應用得不夠自如;回答不嚴密、不完整;第一遍做對了,一改反而改錯了,或第一遍做錯了,后來又改對了;一道題做到一半做不下去了等等。弄懂似非“似是而非”是自己記憶不牢、理解不深、思路不清、運用不活的內容。這表明你的數學基礎不牢固,一定要突出重點,夯實基礎。你要建立各部分內容的知識網絡;全面、準確地把握概念,在理解的基礎上加強記憶;加強對易錯、易混知識的梳理;要多角度、多方位地去理解問題的實質;體會數學思想和解題的方法;當然數學的學習要有一定題量的積累,才能達到舉一反三、運用自如的水平。
第三類問題無為之錯。由于不會,因而答錯了或猜的,或者根本沒有答。這是無思路、不理解,更談不上應用的問題。力爭有為在高三復習的第一輪中,不要做太難的題和綜合性很強的題目,因為綜合題大多是由幾道基礎題組成的,只有夯實了基礎,做熟了基礎題目,掌握了基本思想和方法,綜合題才能迎刃而解。在高三復習時間較緊的情況下,第一階段要有所為,有所不為,但平時考試和老師留的經過篩選的題目要會做,要做好。
冪函數定義:
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的.取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數無界。
定義:
形如y=x^a(a為常數)的函數,即以底數為自變量冪為因變量,指數為常量的函數稱為冪函數。
定義域和值域:
當a為不同的數值時,冪函數的定義域的不同情況如下:如果a為任意實數,則函數的定義域為大于0的所有實數;如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。當x為不同的數值時,冪函數的值域的不同情況如下:在x大于0時,函數的值域總是大于0的實數。在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。而只有a為正數,0才進入函數的值域
性質:
對于a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函數的定義域是R,如果q是偶數,函數的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函數的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對于x>0,則a可以是任意實數;
排除了為0這種可能,即對于x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對于x為大于且等于0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函數的定義域的不同情況如下:
如果a為任意實數,則函數的定義域為大于0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函數的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小于0,這時函數的定義域為大于0的所有實數;如果同時q為奇數,則函數的定義域為不等于0的所有實數。
在x大于0時,函數的值域總是大于0的實數。
在x小于0時,則只有同時q為奇數,函數的值域為非零的實數。
而只有a為正數,0才進入函數的值域。
由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大于0時,冪函數為單調遞增的,而a小于0時,冪函數為單調遞減函數。
(3)當a大于1時,冪函數圖形下凹;當a小于1大于0時,冪函數圖形上凸。
(4)當a小于0時,a越小,圖形傾斜程度越大。
(5)a大于0,函數過(0,0);a小于0,函數不過(0,0)點。
(6)顯然冪函數。