數學下冊八年級知識點第1篇(或≥)連接的式子叫做不等式.2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.3、準確翻譯不等式,正確理解非負數、不小于等數學術下面是小編為大家整理的數學下冊八年級知識點7篇,供大家參考。
"(或"≥")連接的式子叫做不等式.
2、要區別方程與不等式:方程表示的是相等的關系;不等式表示的是不相等的關系.
3、準確"翻譯"不等式,正確理解"非負數"、"不小于"等數學術語.
非負數<===>大于等于0(≥0)<===>0和正數<===>不小于0
非正數<===>小于等于0(≤0)<===>0和負數<===>不大于0
二、不等式的基本性質
1、掌握不等式的基本性質,并會靈活運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:
如果a>b,那么a+c>b+c,a-c>
(2)不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變,即
如果a>b,并且c>0,那么ac>bc,.
(3)不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變,即:
如果a>b,并且c<0,那么ac
2、比較大小:(a、b分別表示兩個實數或整式)
一般地:
如果a>b,那么a-b是正數;反過來,如果a-b是正數,那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a
即:
a>b<===>a-b>0
a=b<===>a-b=0
aa-b<0
(由此可見,要比較兩個實數的大小,只要考察它們的差就可以了.
圖形的平移與旋轉
一、平移變換:?
概念:在平面內,將一個圖形沿著某個方向移動一定的距離,這樣的圖形運動叫做平移。?
性質:
(1)平移前后圖形全等;
?
(2)對應點連線平行或在同一直線上且相等。??
平移的作圖步驟和方法:?
(1)分清題目要求,確定平移的方向和平移的距離;
(2)分析所作的圖形,找出構成圖形的關健點;
(3)沿一定的方向,按一定的距離平移各個關健點;
(4)連接所作的各個關鍵點,并標上相應的字母;
(5)寫出結論。?
二、旋轉變換:?
概念:
在平面內,將一個圖形繞一個定點沿某個方向轉動一個角度,這樣的圖形運動叫做旋轉。?
說明:
(1)圖形的旋轉是由旋轉中心和旋轉的角度所決定的;
(2)旋轉過程中旋轉中心始終保持不動。
(3)旋轉過程中旋轉的方向是相同的.
(4)旋轉過程靜止時,圖形上一個點的旋轉角度是一樣的。
旋轉不改變圖形的大小和形狀。
性質:
(1)對應點到旋轉中心的距離相等;
?
(2)對應點與旋轉中心所連線段的夾角等于旋角;
(3)旋轉前、后的圖形全等。
旋轉作圖的步驟和方法:
(1)確定旋轉中心及旋轉方向、旋轉角;
(2)找出圖形的關鍵點;
(3)將圖形的關鍵點和旋轉中心連接起來,然后按旋轉方向分別將它們旋轉一個旋轉角度數,得到這些關鍵點的對應點;
(4)按原圖形順次連接這些對應點,所得到的圖形就是旋轉后的圖形。
說明:在旋轉作圖時,一對對應點與旋轉中心的夾角即為旋轉角。
常見考法?
(1)把平移旋轉結合起來證明三角形全等;
(2)利用平移變換與旋轉變換的性質,設計一些題目??
第1章 分式
一.知識框架
二.知識概念
分式:形如A/B,A、B是整式,B中含有未知數且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。
分式有意義的條件:分母不等于0
約分:把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。
通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。
分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A_/B_ A/B=A÷C/B÷C (A,B,C為整式,且C≠0)
最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.
分式的四則運算:同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c
異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然后再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd
分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b _c/d=ac/bd
分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與被除式相乘.a/b÷c/d=ad/bc
(2).除以一個分式,等于乘以這個分式的倒數:a/b÷c/d=a/b_/c
分式方程的意義:分母中含有未知數的方程叫做分式方程.
分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);②按解整式方程的步驟求出未知數的值;③驗根(求出未知數的值后必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能產生增根).
分式和分數有著許多相似點。教師在講授本章內容時,可以對比分數的特點及性質,讓學生自主學習。重點在于分式方程解實際應用問題。
第2章 反比例函數
一.知識框架
二.知識概念
反比例函數:形如y= (k為常數,k≠0)的函數稱為反比例函數。其他形式xy=k
圖像:反比例函數的圖像屬于雙曲線。反比例函數的圖象既是軸對稱圖形又是中心對稱圖形。有兩條對稱軸:直線y=x和 y=-x。對稱中心是:原點
性質:當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內y值隨x值的增大而減小;
當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內y值隨x值的增大而增大。
|k|的幾何意義:表示反比例函數圖像上的點向兩坐標軸所作的垂線段與兩坐標軸圍成的矩形的面積。
在學習反比例函數時,教師可讓學生對比之前所學習的一次函數啟發學生進行對比性學習。在做題時,培養和養成數形結合的思想。
第3章 勾股定理
一.知識框架
二 知識概念
勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2。
勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是直角三角形。
定理:經過證明被確認正確的命題叫做定理。
我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)
勾股定理是直角三角形具備的重要性質。本章要求學生在理解勾股定理的前提下,學會利用這個定理解決實際問題??梢酝ㄟ^自主學習的發展體驗獲取數學知識的感受
第4章 四邊形
一.知識框架
二.知識概念
平行四邊形定義:
有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。
平行四邊形的判定 兩組對邊分別相等的四邊形是平行四邊形
對角線互相平分的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
直角三角形斜邊上的中線等于斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質:
矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD
矩形判定定理:
有一個角是直角的平行四邊形叫做矩形。
對角線相等的平行四邊形是矩形。
有三個角是直角的四邊形是矩形。
菱形的定義 :鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。
菱形的判定定理:一組鄰邊相等的平行四邊形是菱形。
對角線互相垂直的平行四邊形是菱形。
四條邊相等的四邊形是菱形。
菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。
正方形既是矩形,又是菱形。
正方形判定定理:
鄰邊相等的矩形是正方形。
有一個角是直角的菱形是正方形。
梯形的定義:
一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
本章內容是對平面上四邊形的分類及性質上的研究,要求學生在學習過程中多動手多動腦,把自己的發現和知識帶入做題中。因此教師在教學時可以多鼓勵學生自己總結四邊形的特點,這樣有利于學生對知識的把握。
第5章 數據的分析
一.知識框架
二.知識概念
加權平均數:加權平均數的計算公式。
權的理解:反映了某個數據在整個數據中的重要程度。
中位數:將一組數據按照由小到大(或由大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數(median);如果數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數。
眾數:一組數據中出現次數最多的數據就是這組數據的眾數(mode)。
極差:組數據中的最大數據與最小數據的差叫做這組數據的極差(range)。
方差越大,數據的波動越大;方差越小,數據的波動越小,就越穩定。
本章內容要求學生在經歷數據的收集、整理、分析過程中發展學生的統計意識和數據處理的方法與能力。在教學過程中,以生活實例為主,讓學生體會到數據在生活中的重要性。
1、要有學習數學的興趣?!芭d趣是最好的老師”。做任何事情,只要有興趣,就會積極、主動去做,就會想方設法把它做好。但培養數學興趣的關鍵是必須先掌握好數學基礎知識和基本技能。有的同學老想做難題,看到別人上數奧班,自己也要去。如果這些同學連課內的基礎知識都掌握不好,在里面學習只能濫竽充數,對學習并沒有幫助,反而使自己失去學習數學的信心。我建議同學們可以看一些數學名人小故事、趣味數學等知識來增強學習的自信心。
2、要有端正的學習態度。首先,要明確學習是為了自己,而不是為了老師和父母。因此,上課要專心、積極思考并勇于發言。其次,回家后要認真完成作業,及時地把當天學習的知識進行復習,再把明天要學的內容做一下預習,這樣,學起來會輕松,理解得更加深刻些。
3、要有“持之以恒”的精神。要使學習成績提高,不能著急,要一步一步地進行,不要指望一夜之間什么都學會了。即使進步慢一點,只要堅持不懈,也一定能在數學的學習道路上獲得成功!還要有“不恥下問”的精神,不要怕丟面子。其實無論知識難易,只要學會了,弄懂了,那才是最大的面子!
抽樣調查
(1)調查樣本是按隨機的原則抽取的,在總體中每一個單位被抽取的機會是均等的,因此,能夠保證被抽中的單位在總體中的均勻分布,不致出現傾向性誤差,代表性強。
(2)是以抽取的全部樣本單位作為一個“代表團”,用整個“代表團”來代表總體。而不是用隨意挑選的個別單位代表總體。
(3)所抽選的調查樣本數量,是根據調查誤差的要求,經過科學的計算確定的,在調查樣本的數量上有可靠的保證。
(4)抽樣調查的誤差,是在調查前就可以根據調查樣本數量和總體中各單位之間的差異程度進行計算,并控制在允許范圍以內,調查結果的準確程度較高。
課后練習
抽樣成數是一個(A)
結構相對數比例相對數比較相對數強度相對數
成數和成數方差的關系是(C)
成數越接近于0,成數方差越大成數越接近于1,成數方差越大
成數越接近于,成數方差越大成數越接近于,成數方差越大
整群抽樣是對被抽中的群作全面調查,所以整群抽樣是(B)
全面調查非全面調查一次性調查經常性調查
對400名大學生抽取19%進行不重復抽樣調查,其中優等生比重為20%,概率保證程度為%,則優等生比重的極限抽樣誤差為(A)
%%%%
根據5%抽樣資料表明,甲產品合格率為60%,乙產品合格率為80%,在抽樣產品數相等的條件下,合格率的抽樣誤差是(B)
甲產品大乙產品大相等無法判斷
一、課內重視聽講,課后及時復習。
新知識的接受,數學能力的培養主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。
首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,慶盡量回憶而不采用不清楚立即翻書之舉。
認真獨立完成作業,勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網絡,納入自己的知識體系。
二、適當多做題,養成良好的解題習慣。
要想學好數學,多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規律。
對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。
在平時要養成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態,在考試中能運用自如。實踐證明:越到關鍵時候,你所表現的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養成良好的解題習慣是非常重要的。
三、調整心態,正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。
調整好自己的心態,使自己在任何時候鎮靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發揮。
由此可見,要把數學學好就得找到適合自己的學習方法,了解數學學科的特點,使自己進入數學的廣闊天地中去。
1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的余角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連接的所有線段中,垂線段最短
7平行公理經過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內錯角相等,兩直線平行
11同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內錯角相等
14兩直線平行,同旁內角互補
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內角和定理三角形三個內角的和等于180°
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等于和它不相鄰的兩個內角的和
20推論3三角形的一個外角大于任何一個和它不相鄰的內角
21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等
23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合