初二上冊數學總結第1、平均數①一般地,對于n個數,我們把(x1+x2+···+xn)叫做這n個數的算數平均數,簡稱平均數記為。②在實際問題中,一組數據里的各個數據的“重要程度”未必相同,因而在計算下面是小編為大家整理的初二上冊數學總結熱門13篇,供大家參考。
1、平均數
①一般地,對于n個數,我們把(x1+x2+···+xn)叫做這n個數的算數平均數,簡稱平均數記為。
②在實際問題中,一組數據里的各個數據的“重要程度”未必相同,因而在計算,這組數據的平均數時,往往給每個數據一個權,叫做加權平均數
2、中位數與眾數
①中位數:一般地,n個數據按大小順序排列,處于最中間位置的一個數據(或最中間兩個數據的平均數)叫做這組數據的中位數
②一組數據中出現次數最多的那個數據叫做這組數據的眾數
③平均數、中位數和眾數都是描述數據集中趨勢的統計量
④計算平均數時,所有數據都參加運算,它能充分地利用數據所提供的信息,因此在現實生活中較為常用,但他容易受極端值影響。
⑤中位數的優點是計算簡單,受極端值影響較小,但不能充分利用所有數據的信息
⑥各個數據重復次數大致相等時,眾數往往沒有特別意義
3、從統計圖分析數據的集中趨勢
4、數據的離散程度
①實際生活中,除了關心數據的集中趨勢外,人們還關注數據的離散程度,即它們相對于集中趨勢的偏離情況。一組數據中最大數據與最小數據的差,(稱為極差),就是刻畫數據離散程度的一個統計量
②數學上,數據的離散程度還可以用方差或標準差刻畫
③方差是各個數據與平均數差的平方的平均數
④其中是x1 ,平均數,s2是方差,而標準差就是方差的算術平方根
⑤一般而言,一組數據的極差、方差或標準差越小,這組數據就越穩定。
一:勾股定理
1、探索勾股定理
①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方,如果用a,b和c分別表示直角三角形的兩直角邊和斜邊,那么a2+b2=c2
2、一定是直角三角形嗎
①如果三角形的三邊長a b c滿足a2+b2=c2 ,那么這個三角形一定是直角三角形
3、勾股定理的應用
二:實數
1、認識無理數
①有理數:總是可以用有限小數和無限循環小數表示
②無理數:無限不循環小數
2、平方根
①算數平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x就叫做a的算數平方根
②特別地,我們規定:0的算數平方根是0
③平方根:一般地,如果一個數x的平方等于a,即x2=a。那么這個數x就叫做a的平方根,也叫做二次方根
④一個正數有兩個平方根;0只有一個平方根,它是0本身;負數沒有平方根
⑤正數有兩個平方根,一個是a的算數平方,另一個是—,它們互為相反數,這兩個平方根合起來可記作±
⑥開平方:求一個數a的平方根的運算叫做開平方,a叫做被開方數
3、立方根
①立方根:一般地,如果一個數x的立方等于a,即x3=a,那么這個數x就叫做a的立方根,也叫三次方根
②每個數都有一個立方根,正數的立方根是正數;0立方根是0;負數的立方根是負數。
③開立方:求一個數a的立方根的運算叫做開立方,a叫做被開方數
4、估算
①估算,一般結果是相對復雜的小數,估算有精確位數
5、用計算機開平方
6、實數
①實數:有理數和無理數的統稱
②實數也可以分為正實數、0、負實數
③每一個實數都可以在數軸上表示,數軸上每一個點都對應一個實數,在數軸上,右邊的點永遠比左邊的點表示的數大
7、二次根式
①含義:一般地,形如(a≥0)的式子叫做二次根式,a叫做被開方數
②=(a≥0,b≥0),=(a≥0,b>0)
③最簡二次根式:一般地,被開方數不含分母,也不含能開的盡方的因數或因式,這樣的二次根式,叫做最簡二次根式
④化簡時,通常要求最終結果中分母不含有根號,而且各個二次根式時最簡二次根式
三:位置與坐標
1、確定位置
①在平面內,確定一個物體的位置一般需要兩個數據
2、平面直角坐標系
①含義:在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系
②通常地,兩條數軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做x軸或者橫軸,豎直的數軸叫y軸和縱軸,二者統稱為坐標軸,它們的公共原點o被稱為直角坐標系的原點
③建立了平面直角坐標系,平面內的點就可以用一組有序實數對來表示
④在平面直角坐標系中,兩條坐標軸將坐標平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時針方向叫做第二象限,第三象限,第四象限,坐標軸上的點不在任何一個象限
⑤在直角坐標系中,對于平面上任意一點,都有唯一的一個有序實數對(即點的坐標)與它對應;反過來,對于任意一個有序實數對,都有平面上唯一的一點與它對應
3、軸對稱與坐標變化
①關于x軸對稱的兩個點的坐標,橫坐標相同,縱坐標互為相反數;關于y軸對稱的兩個點的坐標,縱坐標相同,橫坐標互為相反數
四:一次函數
1、函數
①一般地,如果在一個變化過程中有兩個變量x和y,并且對于變量x的每一個值,變量y都有唯一的值與它對應,那么我們稱y是x的函數其中x是自變量
②表示函數的方法一般有:列表法、關系式法和圖象法
③對于自變量在可取值范圍內的一個確定的值a,函數有唯一確定的對應值,這個對應值稱為當自變量等于a的函數值
2、一次函數與正比例函數
①若兩個變量x,y間的對應關系可以表示成y=kx+b(k、b為常數,k≠0)的形式,則稱y是x的一次函數,特別的,當b=0時,稱y是x的正比例函數
3、一次函數的圖像
①正比例函數y=kx的圖像是一條經過原點(0,0)的直線。因此,畫正比例函數圖像是,只要再確定一點,過這個點與原點畫直線就可以了
②在正比例函數y=kx中,當k>0時,y的值隨著x值的增大而減小;當k<0時,y的值隨著x的值增大而減小
③一次函數y=kx+b的圖像是一條直線,因此畫一次函數圖像時,只要確定兩個點,再過這兩點畫直線就可以了。一次函數y=kx+b的圖像也稱為直線y=kx+b
④一次函數y=kx+b的圖像經過點(0,b)。當k>0時,y的值隨著x值的增大而增大;當k<0時,y的值隨著x值的增大而減小
4、一次函數的應用
①一般地,當一次函數y=kx+b的函數值為0時,相應的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數y=kx+b的圖像與x軸交點的橫坐標就是方程kx+b=0
課本上講的定理,你可以自己試著自己去推理。這樣不但提高自己的證明能力,也加深對公式的理解。還有就是大量練習題目?;旧厦空n之后都要做課余練習的題目(不包括老師的作業)。數學成績的提高,數學方法的掌握都和同學們良好的學習習慣分不開的,因此.良好的數學學習習慣包括:聽講、閱讀、探究、作業.聽講:應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記.每堂課結束以后應深思一下進行歸納,做到一課一得.閱讀:閱讀時應仔細推敲,弄懂弄通每一個概念、定理和法則,對于例題應與同類參考書聯系起來一同學習,博采眾長,增長知識,發展思維.作業:要先復習后作業,先思考再動筆,做會一類題領會一大片,作業要認真、書寫要規范,只有這樣腳踏實地,一步一個腳印,才能學好數學.總之,在學習數學的過程中,要認識到數學的重要性,充分發揮自己的主觀能動性,從小的細節注意起,養成良好的數學學習習慣,進而培養思考問題、分析問題和解決問題的能力,最終把數學學好.
81 相似三角形判定定理1 兩角對應相等,兩三角形相似(ASA) ?
82 直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似 ?
83 判定定理2 兩邊對應成比例且夾角相等,兩三角形相似(SAS) ?
84 判定定理3 三邊對應成比例,兩三角形相似(SSS) ?
85 定理 如果一個直角三角形的斜邊和一條直角邊與另一個直角三 ?
角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似 ?
86 性質定理1 相似三角形對應高的比,對應中線的比與對應角平 ?
分線的比都等于相似比 ?
87 性質定理2 相似三角形周長的比等于相似比 ?
88 性質定理3 相似三角形面積的比等于相似比的平方 ?
89 任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等 ?
于它的余角的正弦值 ?
90任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等 ?
于它的余角的正切值 ?
91圓是定點的距離等于定長的點的集合 ?
92圓的內部可以看作是圓心的距離小于半徑的點的集合 ?
93圓的外部可以看作是圓心的距離大于半徑的點的集合 ?
94同圓或等圓的半徑相等 ?
95到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半 ?
徑的圓 ?
96和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直 ?
平分線 ?
97到已知角的兩邊距離相等的點的軌跡,是這個角的平分線 ?
98到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距 ?
離相等的一條直線 ?
99定理 不在同一直線上的三點確定一個圓. ?
100垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧 ?
101推論1 ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧 ?
②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧 ?
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧 ?
102推論2 圓的兩條平行弦所夾的弧相等 ?
103圓是以圓心為對稱中心的中心對稱圖形 ?
104定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 ?
相等,所對的弦的弦心距相等 ?
105推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 ?
弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等 ?
106定理 一條弧所對的圓周角等于它所對的圓心角的一半 ?
107推論1 同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等 ?
108推論2 半圓(或直徑)所對的圓周角是直角;90°的圓周角所 ?
對的弦是直徑 ?
109推論3 如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形 ?
110定理 圓的內接四邊形的對角互補,并且任何一個外角都等于它 ?
的內對角 ?
111①直線L和⊙O相交 d
②直線L和⊙O相切 d=r ?
③直線L和⊙O相離 d>r ?
112切線的判定定理 經過半徑的外端并且垂直于這條半徑的直線是圓的切線 ?
113切線的性質定理 圓的切線垂直于經過切點的半徑 ?
114推論1 經過圓心且垂直于切線的直線必經過切點 ?
115推論2 經過切點且垂直于切線的直線必經過圓心 ?
116切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, ?
圓心和這一點的連線平分兩條切線的夾角 ?
117圓的外切四邊形的兩組對邊的和相等 ?
118弦切角定理 弦切角等于它所夾的弧對的圓周角 ?
119推論 如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等 ?
120相交弦定理 圓內的兩條相交弦,被交點分成的兩條線段長的積 ?
相等 ?
121推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的 ?
兩條線段的比例中項 ?
122切割線定理 從圓外一點引圓的切線和割線,切線長是這點到割 ?
線與圓交點的兩條線段長的比例中項 ?
123推論 從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等 ?
124如果兩個圓相切,那么切點一定在連心線上 ?
125①兩圓外離 d>R+r ②兩圓外切 d=R+r ?
③兩圓相交 R-r
1、認識二元一次方程組
①含有兩個未知數,并且所含有未知數的項的次數都是1的方程叫做二元一次方程
②共含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組
③二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解
2、求解二元一次方程組
①將其中一個方程中的某個未知數用含有另一個未知數的代數式表示出來,并代入另個方程中,從而消去一個未知數,化二元一次方程組為一元一次方程,這種解方程組的方法稱為代入消元法,簡稱代入法
②通過兩式子加減,消去其中一個未知數,這種解二元一次方程組的方法叫做加減消元法,簡稱加減法
3、應用二元一次方程組
①雞兔同籠
4、應用二元一次方程組
①增減收支
5、應用二元一次方程組
①里程碑上的數
6、二元一次方程組與一次函數
①一般地,以一個二元一次方程的解為坐標的點組成的圖像與相應的一次函數的圖像相同,是一條直線
②一般地,從圖形的角度看,確定兩條直線相交點的坐標,相當于求相應的二元一次方程組的解,解一個二元一次方程組相當于確定相應兩條直線交點的坐標
7、用二元一次方程組確定一次函數表達式
①先設出函數表達式,再根據所給條件確定表達式中未知的系數,從而得到函數表達式的方法,叫做待定系數法。
8、三元一次方程組
①在一個方程組中,各個式子都含有三個未知數,并且所含有未知數的項的次數都是1,這樣的方程叫做三元一次方程
②像這樣,共含有三個未知數的三個一次方程所組成的一組方程,叫做三元一次方程組
③三元一次方程組中各個方程的公共解,叫做這個三元一次方程組的解.
一.知識框架
二.知識概念
算術平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
平方根:一般地,如果一個數x的平方根等于a,即x2=a,那么數x就叫做a的平方根。
正數有兩個平方根(一正一負)它們互為相反數;0只有一個平方根,就是它本身;負數沒有平方根。
正數的立方根是正數;0的立方根是0;負數的立方根是負數。
數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運算法則及運算律。
一、克服心理疲勞
第一,要有明確的學習目的。學習就像從河里抽水,動力越足,水流量越大。動力來源于目的,只有樹立正確的學習目的,才會產生強大的學習動力;
第二,要培養濃厚的學習興趣。興趣的形成與大腦皮層的興奮中心相聯系,并伴有愉快、喜悅、積極的情緒體驗。而心理疲勞的產生正是大腦皮層抵制的消極情緒引起的`。因此,培養自己的學習興趣,是克服心理疲勞的關鍵所在。有了興趣,學習才會有積極性、自覺性、主動性,才能使心理處于一種良好的競技狀態;
第三,要注意學習的多樣化,書本學習本身就是枯燥單調的,如果多次重復學習某門課程或章節內容,易使大腦皮層產生抑制,出現心理飽和,產生厭倦情緒。所以考生不妨將各門課程交替起來進行復習。
二、戰勝高原現象
復習中的高原現象,是指在復習到一定時期時,往往停滯不前,不僅復習不見進步,反而有退步的現象。在高原期內,并非學習毫無進步,而是某部分進步,另外一些部分則退步,兩者相抵,致使復習成效未從根本上發生變化,因而使人灰心失望。當考生在復習迎考過程中遭遇高原期時,切忌急躁或喪失信心,應找出學習方法、學習積極性等方面的原因。及時調整復習進度,在科學用腦、提高復習效率上多下功夫。
三、重視復習“錯誤”
如果在復習中不善于從錯誤中走出來,缺陷和漏洞就會越來越多,任其下去,最終就會蟻穴潰堤。在備考期間,要想降低錯誤率,除了及時訂正、全面扎實復習之外,非常關鍵的問題就是找出原因,不斷復習錯誤。即定期翻閱錯題,回想錯誤的原因,并對各種錯題及錯誤原因進行分類整理。對其中那些反復錯誤的問題還可考慮再做一遍,以絕“后患”。錯誤原因大致有:概念理解上的問題、粗心大意帶來的問題以及書寫潦草凌亂給自己帶來的錯覺問題等,從而有效地避免在考試時再犯同一類型的錯誤。
四、把握心理特點搞好考前復習
實踐證明,一個人在氣質、性格、心理穩定程度等因素也會影響考前復習??忌趶土曈歼^程中,應根據自己的心理特點來制訂復習迎考計劃,根據自己的心態來調整復習的進度,選擇與運用的復習方式方法,使自己的考前復習達到預期的效果。
1、課本不容忽視
對于初二的學生來說,都在學習新課,課本是大家都容易忽視的一個重要的復習資料。平時在學校的課堂上大家都會隨堂記筆記,課本基本不會翻看,建議同學們在翻看筆記的同時,對照課本,把學過的知識點反復閱讀、理解,并對照課后練習里的習題進行反復思考、琢磨、融會貫通,加深對知識點的理解。對于課本上的重點內容、重點例題也要著重記憶。
2、錯題本
相信學習習慣好的學生都應該有一本錯題本,把每次習題、作業、測試中的錯題抄錄下來,明確答案,找到錯誤原因,發現自己知識和能力上的薄弱點,經常拿出來翻看,遇到反復做錯的題目,要主動和同學商量,向老師請教,徹底把題目弄懂、弄透,以免再犯同類錯誤。
第十一章全等三角形
一.知識框架
二.知識概念
1.全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經過平移、旋轉、對稱等運動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角形。
2.全等三角形的性質:全等三角形的對應角相等、對應邊相等。
3.三角形全等的判定公理及推論有:
(1)“邊角邊”簡稱“SAS”
(2)“角邊角”簡稱“ASA”
(3)“邊邊邊”簡稱“SSS”
(4)“角角邊”簡稱“AAS”
(5)斜邊和直角邊相等的兩直角三角形(HL)。
4.角平分線推論:角的內部到角的兩邊的距離相等的點在叫的平分線上。
5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形、等所隱含的邊角關系),②、回顧三角形判定,搞清我們還需要什么,③、正確地書寫證明格式(順序和對應關系從已知推導出要證明的問題).
在學習三角形的全等時,教師應該從實際生活中的圖形出發,引出全等圖形進而引出全等三角形。通過直觀的理解和比較發現全等三角形的奧妙之處。在經歷三角形的角平分線、中線等探索中激發學生的集合思維,啟發他們的靈感,使學生體會到集合的真正魅力。
第十二章軸對稱
一.知識框架
二.知識概念
1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等于60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等于斜邊的一半。
9.直角三角形斜邊上的中線等于斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑒賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,并利用這些性質來解決一些數學問題。
第十三章實數
一.知識框架
二.知識概念
1.算術平方根:一般地,如果一個正數x的平方等于a,即x2=a,那么正數x叫做a的算術平方根,記作。0的算術平方根為0;從定義可知,只有當a≥0時,a才有算術平方根。
2.平方根:一般地,如果一個數x的平方根等于a,即x2=a,那么數x就叫做a的平方根。
3.正數有兩個平方根(一正一負)它們互為相反數;0只有一個平方根,就是它本身;負數沒有平方根。
4.正數的立方根是正數;0的立方根是0;負數的立方根是負數。
5.數a的相反數是-a,一個正實數的絕對值是它本身,一個負數的絕對值是它的相反數,0的絕對值是0
實數部分主要要求學生了解無理數和實數的概念,知道實數和數軸上的點一一對應,能估算無理數的大小;了解實數的運算法則及運算律,會進行實數的運算。重點是實數的意義和實數的分類;實數的運算法則及運算律。
第十四章一次函數
一.知識框架
二.知識概念
1.一次函數:若兩個變量x,y間的關系式可以表示成y=kx+b(k≠0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數。
2.正比例函數一般式:y=kx(k≠0),其圖象是經過原點(0,0)的一條直線。
3.正比例函數y=kx(k≠0)的圖象是一條經過原點的直線,當k>0時,直線y=kx經過第一、三象限,y隨x的增大而增大,當k<0時,直線y=kx經過第二、四象限,y隨x的增大而減小,在一次函數y=kx+b中:當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
4.已知兩點坐標求函數解析式:待定系數法
一次函數是初中學生學習函數的開始,也是今后學習其它函數知識的基石。在學習本章內容時,教師應該多從實際問題出發,引出變量,從具體到抽象的認識事物。培養學生良好的變化與對應意識,體會數形結合的思想。在教學過程中,應更加側重于理解和運用,在解決實際問題的同時,讓學習體會到數學的實用價值和樂趣。
第十五章整式的乘除與分解因式
一.知識概念
1.同底數冪的乘法法則:(m,n都是正數)
2..冪的乘方法則:(m,n都是正數)
3.整式的乘法
(1)單項式乘法法則:單項式相乘,把它們的系數、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數作為積的一個因式。
(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把它轉化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加。
(3).多項式與多項式相乘
多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,再把所得的積相加。
4.平方差公式:
5.完全平方公式:
6.同底數冪的除法法則:同底數冪相除,底數不變,指數相減,即(a≠0,m、n都是正數,且m>n).
在應用時需要注意以下幾點:
①法則使用的前提條件是“同底數冪相除”而且0不能做除數,所以法則中a≠0.
②任何不等于0的數的0次冪等于1,即,如,(-2.50=1),則00無意義.
③任何不等于0的數的-p次冪(p是正整數),等于這個數的p的次冪的倒數,即(a≠0,p是正整數),而0-1,0-3都是無意義的;當a>0時,a-p的值一定是正的`;當a<0時,a-p的值可能是正也可能是負的,如,
④運算要注意運算順序.
7.整式的除法
單項式除法單項式:單項式相除,把系數、同底數冪分別相除,作為商的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式;
多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,再把所得的商相加.
8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式分解因式.
分解因式的一般方法:1.提公共因式法2.運用公式法3.十字相乘法
分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;
(2)再看能否使用公式法;
(3)用分組分解法,即通過分組后提取各組公因式或運用公式法來達到分解的目的;
(4)因式分解的最后結果必須是幾個整式的乘積,否則不是因式分解;
(5)因式分解的結果必須進行到每個因式在有理數范圍內不能再分解為止.
整式的乘除與分解因式這章內容知識點較多,表面看來零碎的概念和性質也較多,但實際上是密不可分的整體。在學習本章內容時,應多準備些小組合作與交流活動,培養學生推理能力、計算能力。在做題中體驗數學法則、公式的簡潔美、和諧美,提高做題效率。
第十一章 三角形
一、知識框架:
二、知識概念:
三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.
三邊關系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊.
高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高.
中線:在三角形中,連接一個頂點和它對邊中點的線段叫做三角形的中線.
角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線.
三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性.
多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.
多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角.
多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角.
多邊形的對角線:連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線.
正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形.
平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面,
公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等于和它不相鄰的兩個內角的和.
性質2:三角形的一個外角大于任何一個和它不相鄰的內角.
⑶多邊形內角和公式:邊形的內角和等于·180°
⑷多邊形的外角和:多邊形的外角和為360°.
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形.②邊形共有條對角線.
第十二章 全等三角形
一、知識框架:
二、知識概念:
基本定義:
⑴全等形:能夠完全重合的兩個圖形叫做全等形.
⑵全等三角形:能夠完全重合的兩個三角形叫做全等三角形.
⑶對應頂點:全等三角形中互相重合的頂點叫做對應頂點.
⑷對應邊:全等三角形中互相重合的邊叫做對應邊.
⑸對應角:全等三角形中互相重合的角叫做對應角.
基本性質:
⑴三角形的穩定性:三角形三邊的長度確定了,這個三角形的形狀、大小就全確定,這個性質叫做三角形的穩定性.
⑵全等三角形的性質:全等三角形的對應邊相等,對應角相等.
全等三角形的判定定理:
⑴邊邊邊():三邊對應相等的兩個三角形全等.
⑵邊角邊():兩邊和它們的夾角對應相等的兩個三角形全等.
⑶角邊角():兩角和它們的夾邊對應相等的兩個三角形全等.
⑷角角邊():兩角和其中一個角的對邊對應相等的兩個三角形全等.
⑸斜邊、直角邊():斜邊和一條直角邊對應相等的兩個直角三角形全等.
角平分線:
⑴畫法:
⑵性質定理:角平分線上的點到角的兩邊的距離相等.
⑶性質定理的逆定理:角的內部到角的兩邊距離相等的點在角的平分線上.
證明的基本方法:
⑴明確命題中的已知和求證.(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等腰三角形等所隱含的邊角關系)
⑵根據題意,畫出圖形,并用數字符號表示已知和求證.
⑶經過分析,找出由已知推出求證的途徑,寫出證明過程.
第十三章 軸對稱
一、知識框架:
二、知識概念:
基本概念:
⑴軸對稱圖形:如果一個圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形.
⑵兩個圖形成軸對稱:把一個圖形沿某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關于這條直線對稱.
⑶線段的垂直平分線:經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線.
⑷等腰三角形:有兩條邊相等的三角形叫做等腰三角形.相等的兩條邊叫做腰,另一條邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫做底角.
⑸等邊三角形:三條邊都相等的三角形叫做等邊三角形.
基本性質:
⑴對稱的性質:
①不管是軸對稱圖形還是兩個圖形關于某條直線對稱,對稱軸都是任何一對對應點所連線段的垂直平分線.
②對稱的圖形都全等.
⑵線段垂直平分線的性質:
①線段垂直平分線上的點與這條線段兩個端點的距離相等.
②與一條線段兩個端點距離相等的點在這條線段的垂直平分線上.
⑶關于坐標軸對稱的點的坐標性質
⑷等腰三角形的性質:
①等腰三角形兩腰相等.
②等腰三角形兩底角相等(等邊對等角).
③等腰三角形的頂角角平分線、底邊上的中線,底邊上的高相互重合.
④等腰三角形是軸對稱圖形,對稱軸是三線合一(1條).
⑸等邊三角形的性質:
①等邊三角形三邊都相等.
②等邊三角形三個內角都相等,都等于60°
③等邊三角形每條邊上都存在三線合一.
④等邊三角形是軸對稱圖形,對稱軸是三線合一(3條).
基本判定:
⑴等腰三角形的判定:
①有兩條邊相等的三角形是等腰三角形.
②如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊).
⑵等邊三角形的判定:
①三條邊都相等的三角形是等邊三角形.
②三個角都相等的三角形是等邊三角形.
③有一個角是60°的等腰三角形是等邊三角形.
基本方法:
⑴做已知直線的垂線:
⑵做已知線段的垂直平分線:
⑶作對稱軸:連接兩個對應點,作所連線段的垂直平分線.
⑷作已知圖形關于某直線的對稱圖形:
⑸在直線上做一點,使它到該直線同側的兩個已知點的距離之和最短.
1 全等三角形的對應邊、對應角相等 ?
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等 ?
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等 ?
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等 ?
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等 ?
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等 ?
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等 ?
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上 ?
9 角的平分線是到角的兩邊距離相等的所有點的集合 ?
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角) ?
21 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊 ?
22 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合 ?
23 推論3 等邊三角形的各角都相等,并且每一個角都等于60° ?
24 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊) ?
25 推論1 三個角都相等的三角形是等邊三角形 ?
26 推論 2 有一個角等于60°的等腰三角形是等邊三角形 ?
27 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半 ?
28 直角三角形斜邊上的中線等于斜邊上的一半 ?
29 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等 ?
30 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上 ?
31 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合 ?
32 定理1 關于某條直線對稱的兩個圖形是全等形 ?
33 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線 ?
34定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上 ?
35逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱 ?
36勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2 ?
37勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形 ?
38定理 四邊形的內角和等于360° ?
39四邊形的外角和等于360° ?
40多邊形內角和定理 n邊形的內角的和等于(n-2)×180° ?
41推論 任意多邊的外角和等于360° ?
42平行四邊形性質定理1 平行四邊形的對角相等 ?
43平行四邊形性質定理2 平行四邊形的對邊相等 ?
44推論 夾在兩條平行線間的平行線段相等 ?
45平行四邊形性質定理3 平行四邊形的對角線互相平分 ?
46平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形 ?
47平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形 ?
48平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形 ?
49平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形 ?
50矩形性質定理1 矩形的四個角都是直角 ?
51矩形性質定理2 矩形的對角線相等 ?
52矩形判定定理1 有三個角是直角的四邊形是矩形 ?
53矩形判定定理2 對角線相等的平行四邊形是矩形 ?
54菱形性質定理1 菱形的四條邊都相等 ?
55菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角 ?
56菱形面積=對角線乘積的一半,即S=(a×b)÷2 ?
57菱形判定定理1 四邊都相等的四邊形是菱形 ?
58菱形判定定理2 對角線互相垂直的平行四邊形是菱形 ?
59正方形性質定理1 正方形的四個角都是直角,四條邊都相等 ?
60正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角 ?
61定理1 關于中心對稱的兩個圖形是全等的 ?
62定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分 ?
63逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一 ?
點平分,那么這兩個圖形關于這一點對稱 ?
64等腰梯形性質定理 等腰梯形在同一底上的兩個角相等 ?
65等腰梯形的兩條對角線相等 ?
66等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形 ?
67對角線相等的梯形是等腰梯形 ?
68平行線等分線段定理 如果一組平行線在一條直線上截得的線段 ?
相等,那么在其他直線上截得的線段也相等 ?
69 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰 ?
70 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第 ?
三邊 ?
71 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它 ?
的一半 ?
72 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的 ?
一半 L=(a+b)÷2 S=L×h ?
73 (1)比例的基本性質 如果a:b=c:d,那么ad=bc ?
如果ad=bc,那么a:b=c:d ?
74 (2)合比性質 如果a/b=c/d,那么(a±b)/b=(c±d)/d ?
75 (3)等比性質 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ?
(a+c+…+m)/(b+d+…+n)=a/b ?
76 平行線分線段成比例定理 三條平行線截兩條直線,所得的對應 ?
線段成比例 ?
77 推論 平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例 ?
78 定理 如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊 ?
79 平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例 ?
80 定理 平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似 ?
1 全等三角形的對應邊、對應角相等
2邊角邊公理(SAS) 有兩邊和它們的夾角對應相等的兩個三角形全等
3 角邊角公理( ASA)有兩角和它們的夾邊對應相等的兩個三角形全等
4 推論(AAS) 有兩角和其中一角的對邊對應相等的兩個三角形全等
5 邊邊邊公理(SSS) 有三邊對應相等的兩個三角形全等
6 斜邊、直角邊公理(HL) 有斜邊和一條直角邊對應相等的兩個直角三角形全等
7 定理1 在角的平分線上的點到這個角的兩邊的距離相等
8 定理2 到一個角的兩邊的距離相同的點,在這個角的平分線上
9 角的平分線是到角的兩邊距離相等的所有點的集合
10 等腰三角形的性質定理 等腰三角形的兩個底角相等 (即等邊對等角)
11 推論1 等腰三角形頂角的平分線平分底邊并且垂直于底邊
12 等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
13 推論3 等邊三角形的各角都相等,并且每一個角都等于60°
14 等腰三角形的判定定理 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
15 推論1 三個角都相等的三角形是等邊三角形
16 推論 2 有一個角等于60°的等腰三角形是等邊三角形
17 在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半
18 直角三角形斜邊上的中線等于斜邊上的一半
19 定理 線段垂直平分線上的點和這條線段兩個端點的距離相等
20 逆定理 和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
21 線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
22 定理1 關于某條直線對稱的兩個圖形是全等形
23 定理 2 如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線
24定理3 兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
25逆定理 如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱
26勾股定理 直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
27勾股定理的逆定理 如果三角形的三邊長a、b、c有關系a^2+b^2=c^2 ,那么這個三角形是直角三角形
28定理 四邊形的內角和等于360°
29四邊形的外角和等于360°
30多邊形內角和定理 n邊形的內角的和等于(n-2)×180°
31推論 任意多邊的外角和等于360°
32平行四邊形性質定理1 平行四邊形的對角相等
33平行四邊形性質定理2 平行四邊形的對邊相等
34推論 夾在兩條平行線間的平行線段相等
35平行四邊形性質定理3 平行四邊形的對角線互相平分
36平行四邊形判定定理1 兩組對角分別相等的四邊形是平行四邊形
37平行四邊形判定定理2 兩組對邊分別相等的四邊形是平行四邊形
38平行四邊形判定定理3 對角線互相平分的四邊形是平行四邊形
39平行四邊形判定定理4 一組對邊平行相等的四邊形是平行四邊形
40矩形性質定理1 矩形的四個角都是直角
41矩形性質定理2 矩形的對角線相等
42矩形判定定理1 有三個角是直角的四邊形是矩形
43矩形判定定理2 對角線相等的平行四邊形是矩形
44菱形性質定理1 菱形的四條邊都相等
45菱形性質定理2 菱形的對角線互相垂直,并且每一條對角線平分一組對角
46菱形面積=對角線乘積的一半,即S=(a×b)÷2
47菱形判定定理1 四邊都相等的四邊形是菱形
48菱形判定定理2 對角線互相垂直的平行四邊形是菱形
49正方形性質定理1 正方形的四個角都是直角,四條邊都相等
50正方形性質定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
51定理1 關于中心對稱的兩個圖形是全等的
52定理2 關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分
53逆定理 如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱
54等腰梯形性質定理 等腰梯形在同一底上的兩個角相等
55等腰梯形的兩條對角線相等
56等腰梯形判定定理 在同一底上的兩個角相等的梯形是等腰梯形
57對角線相等的梯形是等腰梯形
58平行線等分線段定理 如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
59 推論1 經過梯形一腰的中點與底平行的直線,必平分另一腰
60 推論2 經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
61 三角形中位線定理 三角形的中位線平行于第三邊,并且等于它的一半
62 梯形中位線定理 梯形的中位線平行于兩底,并且等于兩底和的一半 L=(a+b)÷2 S=L×h
運用公式x2 +(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:
必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等于
一次項的系數.
將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:
① 列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等于一次項系數.
將原多項式分解成(x+q)(x+p)的形式.
(七)分式的乘除法
把一個分式的分子與分母的公因式約去,叫做分式的約分.
分式進行約分的目的是要把這個分式化為最簡分式.
如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,
(x-y)3=-(y-x)
分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.
注意混合運算中應先算括號,再算乘方,然后乘除,最后算加減.
(八)分數的加減法
通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.
一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
通分的依據:分式的基本性質.
通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的次冪的積作公分母,這樣的公分母叫做最簡公分母.
類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.
同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。
異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然后再加減.
作為最后結果,如果是分式則應該是最簡分式.
(九)含有字母系數的一元一次方程
含有字母系數的一元一次方程
引例:一數的a倍(a≠0)等于b,求這個數。用x表示這個數,根據題意,可得方程 ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的系數,b是常數項。這個方程就是一個含有字母系數的一元一次方程。
含有字母系數的方程的解法與以前學過的只含有數字系數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等于零。
同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括號.
對于整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然后再通分,這樣可使運算簡化.