<ol id="ebnk9"></ol>
    1. 高考知識點數學9篇(完整文檔)

      發布時間:2025-06-20 16:16:16   來源:心得體會    點擊:   
      字號:

      高考知識點的數學第1篇一.知識歸納:1.集合的有關概念。1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出下面是小編為大家整理的高考知識點數學9篇,供大家參考。

      高考知識點數學9篇

      高考知識點的數學 第1篇

      一.知識歸納:

      1.集合的有關概念。

      1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

      注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

      ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

      ③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

      2)集合的表示方法:常用的有列舉法、描述法和圖文法

      3)集合的分類:有限集,無限集,空集。

      4)常用數集:N,Z,Q,R,N.

      2.子集、交集、并集、補集、空集、全集等概念。

      1)子集:若對x∈A都有x∈B,則A B(或A B);

      2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且 )

      3)交集:A∩B={x| x∈A且x∈B}

      4)并集:A∪B={x| x∈A或x∈B}

      5)補集:CUA={x| x A但x∈U}

      注意:①? A,若A≠?,則? A ;

      ②若, ,則 ;

      ③若且 ,則A=B(等集)

      3.弄清集合與元素、集合與集合的關系,掌握有關的術語和符號,特別要注意以下的符號:(1) 與、?的區別;(2) 與 的區別;(3) 與 的區別。

      4.有關子集的幾個等價關系

      ①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

      ④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

      5.交、并集運算的性質

      ①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

      ③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

      6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

      高考知識點的數學 第2篇

      1.數列的定義

      按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

      (1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

      (2)在數列的定義中并沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

      (4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函數值,也就是相當于f(n),而項數是指這個數在數列中的位置序號,它是自變量的值,相當于f(n)中的n.

      (5)次序對于數列來講是十分重要的`,有幾個相同的數,由于它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

      2.數列的分類

      (1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對于有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

      (2)按照項與項之間的大小關系或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

      3.數列的通項公式

      數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

      這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函數關系不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

      由公式寫出的后續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

      再強調對于數列通項公式的理解注意以下幾點:

      (1)數列的通項公式實際上是一個以正整數集N.或它的有限子集{1,2,…,n}為定義域的函數的表達式.

      (2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

      (3)如所有的函數關系不一定都有解析式一樣,并不是所有的數列都有通項公式.

      如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

      (4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

      (5)有些數列,只給出它的前幾項,并沒有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式并不.

      高考知識點的數學 第3篇

      1、學會三視圖的分析:

      2、斜二測畫法應注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o"x"、o"y"、使∠x"o"y"=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側)面積與體積公式:

      ⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

      ⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

      ⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=

      ⑷球體:①表面積:S=;②體積:V=

      4、位置關系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角


      高考知識點的數學 第4篇

      反正弦函數的導數:正弦函數y=sinx在[-π/2,π/2]上的反函數,叫做反正弦函數。記作arcsinx,表示一個正弦值為x的角,該角的范圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。

      反函數求導方法

      若F(X),G(X)互為反函數,

      則:F"(X)_"(X)=1

      y"_"=1(arcsinx)"_siny)"=1

      y"=1/(siny)"=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

      其余依此類推

      高考知識點的數學 第5篇

      1、配方法:利用二次函數的配方法求值域,需注意自變量的取值范圍。

      2、換元法:常用代數或三角代換法,把所給函數代換成值域容易確定的另一函數,從而得到原函數值域,如y=ax+b+_√cx-d(a,b,c,d均為常數且ac不等于0)的函數常用此法求解。

      3、判別式法:若函數為分式結構,且分母中含有未知數x?,則常用此法。通常去掉分母轉化為一元二次方程,再由判別式△≥0,確定y的范圍,即原函數的值域

      4、不等式法:利用a+b≥2√ab(其中a,b∈R+)求函數值域時,要時刻注意不等式成立的條件,即“一正,二定,三相等”。

      5、反函數法:若原函數的值域不易直接求解,則可以考慮其反函數的定義域,根據互為反函數的兩個函數定義域與值域互換的特點,確定原函數的值域,如y=cx+d/ax+b(a≠0)型函數的值域,可采用反函數法,也可用分離常數法。

      6、單調性法:首先確定函數的定義域,然后在根據其單調性求函數值域,常用到函數y=x+p/x(p>0)的單調性:增區間為(-∞,-√p)的左開右閉區間和(√p,+∞)的左閉右開區間,減區間為(-√p,0)和(0,√p)

      7、數形結合法:分析函數解析式表達的集合意義,根據其圖像特點確定值域。

      高考數學知識點:求函數單調性的基本方法

      解:先要弄清概念和研究目的,因為函數本身是動態的,所以判斷函數的單調性、奇偶性,還有研究函數切線的斜率、極值等等,都是為了更好地了解函數本身所采用的方法。其次就解題技巧而言,當然是立足于掌握課本上的例題,然后再找些典型例題做做就可以了,這部分知識僅就應付解題而言應該不是很難。最后找些考試試卷題目來解,針對考試會出的題型強化一下,所謂知己知彼百戰不殆。

      1、把握好函數單調性的定義。證明函數單調性一般(初學最好用定義)用定義(謹防循環論證),如果函數解析式異常復雜或者具有某種特殊形式,可以采用函數單調性定義的等價形式證明。另外還請注意函數單調性的定義是[充要命題]。

      2、熟練掌握基本初等函數的單調性及其單調區間。理解并掌握判斷復合函數單調性的方法:同增異減。

      3、高三選修課本有導數及其應用,用導數求函數的單調區間一般是非常簡便的。

      還應注意函數單調性的應用,例如求極值、比較大小,還有和不等式有關的問題。

      高考知識點的數學 第6篇

      一、直線與圓:

      1、直線的傾斜角的范圍是

      在平面直角坐標系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

      2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

      過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

      3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

      ⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

      4、直線與直線的位置關系:

      (1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

      5、點到直線的距離公式;

      兩條平行線與的距離是

      6、圓的標準方程⑵圓的一般方程:

      注意能將標準方程化為一般方程

      7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

      8、直線與圓的位置關系,通常轉化為圓心距與半徑的關系,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

      9、解決直線與圓的關系問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

      二、圓錐曲線方程:

      1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

      2、雙曲線:①方程(a,b>0)注意還有一個;②定義:

      高考知識點的數學 第7篇

      1、 80分及以下的考生

      對于做歷年試題、??碱}基本能考70分左右,目標分數是90分的同學來說,做多少題目并不是最重要的,對于這部分考生而言,把基本的知識體系梳理好,考試必考題目的方法整理好這才是最重要的,否則做多少題目對你現階段的提分效果都不是太大。

      2、 80—90分奔120分的考生

      這部分考生基礎都沒有問題,一般缺乏的是知識框架、條理、以及難題的思考和分析方法,其實要拿到120分并不難,需要考生把選擇加填空最多控制在錯3個,大題部分,丟分盡量控制在15分的范圍內。按照這個分數安排復習方法。

      選擇題部分,高考的選擇題部分題型考試的方向基本都是固定的,當你在一輪二輪復習過程中總結出題目的出題策略時,答題就變得很簡單了。比如立體幾何三視圖,概率計算,圓錐曲線離心率等等試題中都有一些特征,只要掌握思考的切入方法和要點,再適當訓練基本就可以全面突破,但是如果不掌握核心方法,單純做題訓練就算做很多題目,突破也非常困難,學習就會進入一個死循環,對照答案可以理解,但自己遇到新的題目任然無從下手。

      關于大題方面,基本上三角函數或解三角形、數列、立體幾何和概率統計應該是考生努力把分數拿滿的題目。對于較難的原則曲線和導數兩道題目基本要拿一半的分數,考生復習時可把數學大題的每一道題作為一個獨立的版塊章節,先總結每道大題??嫉膸追N題型,再專項突破里面的運算方法,圖形處理方法以及解題的思考突破口,只要把這些都歸納到位,那么總結的框架套路,都是可以直接秒刷的題目的。

      3、 120 奔140 的考生

      分數達到120的同學,知識框架應該有了,做題的套路也有一些了。那么怎么提高?

      首先選擇填空錯誤基本控制在1個以內,對于后面壓軸解答題達到七成基本就可以了,具體而言考生需要要針對壓軸題進行方法層面和題型層面的體系歸納,要點是解題過程中的細節運算和做題速度,需要精做一些與高考難度一致或稍高的典型題目,比如選擇一些以前全國各省市的模擬和診斷中的典型題目。

      4 、140 奔150的考生

      現在數學140 ,努力奔向150的同學們,只有一個建議——好好學英語、語文或其他科目去吧,你們的提升空間不在數學上。

      選擇填空題

      1、易錯點歸納:

      九大模塊易混淆難記憶考點分析,如概率和頻率概念混淆、數列求和公式記憶錯誤等,強化基礎知識點記憶,避開因為知識點失誤造成的客觀性解題錯誤。

      針對審題、解題思路不嚴謹如集合題型未考慮空集情況、函數問題未考慮定義域等主觀性因素造成的失誤進行專項訓練。

      2、答題方法:

      選擇題十大速解方法:排除法、增加條件法、以小見大法、極限法、關鍵點法、對稱法、小結論法、歸納法、感覺法、分析選項法;

      填空題四大速解方法:直接法、特殊化法、數形結合法、等價轉化法。

      解答題

      專題一、三角變換與三角函數的性質問題

      1、解題路線圖

      ①不同角化同角

      ②降冪擴角

      ③化f(x)=Asin(ωx+φ)+h

      ④結合性質求解。

      2、構建答題模板

      ①化簡:三角函數式的化簡,一般化成y=Asin(ωx+φ)+h的形式,即化為“一角、一次、一函數”的形式。

      ②整體代換:將ωx+φ看作一個整體,利用y=sin x,y=cos x的性質確定條件。

      ③求解:利用ωx+φ的范圍求條件解得函數y=Asin(ωx+φ)+h的性質,寫出結果。

      ④反思:反思回顧,查看關鍵點,易錯點,對結果進行估算,檢查規范性。

      專題二、解三角形問題

      1、解題路線圖

      (1) ①化簡變形;②用余弦定理轉化為邊的關系;③變形證明。

      (2) ①用余弦定理表示角;②用基本不等式求范圍;③確定角的取值范圍。

      2、構建答題模板

      ①定條件:即確定三角形中的已知和所求,在圖形中標注出來,然后確定轉化的方向。

      ②定工具:即根據條件和所求,合理選擇轉化的工具,實施邊角之間的互化。

      ③求結果。

      ④再反思:在實施邊角互化的時候應注意轉化的方向,一般有兩種思路:一是全部轉化為邊之間的關系;二是全部轉化為角之間的關系,然后進行恒等變形。

      專題三、數列的通項、求和問題

      1、解題路線圖

      ①先求某一項,或者找到數列的關系式。

      ②求通項公式。

      ③求數列和通式。

      2、構建答題模板

      ①找遞推:根據已知條件確定數列相鄰兩項之間的關系,即找數列的遞推公式。

      ②求通項:根據數列遞推公式轉化為等差或等比數列求通項公式,或利用累加法或累乘法求通項公式。

      ③定方法:根據數列表達式的結構特征確定求和方法(如公式法、裂項相消法、錯位相減法、分組法等)。

      ④寫步驟:規范寫出求和步驟。

      ⑤再反思:反思回顧,查看關鍵點、易錯點及解題規范。

      專題四、利用空間向量求角問題

      1、解題路線圖

      ①建立坐標系,并用坐標來表示向量。

      ②空間向量的坐標運算。

      ③用向量工具求空間的角和距離。

      2、構建答題模板

      ①找垂直:找出(或作出)具有公共交點的三條兩兩垂直的直線。

      ②寫坐標:建立空間直角坐標系,寫出特征點坐標。

      ③求向量:求直線的方向向量或平面的法向量。

      ④求夾角:計算向量的夾角。

      ⑤得結論:得到所求兩個平面所成的角或直線和平面所成的角。

      專題五、圓錐曲線中的范圍問題

      1、解題路線圖

      ①設方程。

      ②解系數。

      ③得結論。

      2、構建答題模板

      ①提關系:從題設條件中提取不等關系式。

      ②找函數:用一個變量表示目標變量,代入不等關系式。

      ③得范圍:通過求解含目標變量的不等式,得所求參數的范圍。

      ④再回顧:注意目標變量的范圍所受題中其他因素的制約。

      專題六、解析幾何中的探索性問題

      1、解題路線圖

      ①一般先假設這種情況成立(點存在、直線存在、位置關系存在等)

      ②將上面的假設代入已知條件求解。

      ③得出結論。

      2、構建答題模板

      ①先假定:假設結論成立。

      ②再推理:以假設結論成立為條件,進行推理求解。

      ③下結論:若推出合理結果,經驗證成立則肯。

      定假設;若推出矛盾則否定假設。

      ④再回顧:查看關鍵點,易錯點(特殊情況、隱含條件等),審視解題規范性。

      專題七、離散型隨機變量的均值與方差

      1、解題路線圖

      (1)①標記事件;②對事件分解;③計算概率。

      (2)①確定ξ取值;②計算概率;③得分布列;④求數學期望。

      2、構建答題模板

      ①定元:根據已知條件確定離散型隨機變量的取值。

      ②定性:明確每個隨機變量取值所對應的事件。

      ③定型:確定事件的概率模型和計算公式。

      ④計算:計算隨機變量取每一個值的概率。

      ⑤列表:列出分布列。

      ⑥求解:根據均值、方差公式求解其值。

      專題八、函數的單調性、極值、最值問題

      1、解題路線圖

      (1)①先對函數求導;②計算出某一點的斜率;③得出切線方程。

      (2)①先對函數求導;②談論導數的正負性;③列表觀察原函數值;④得到原函數的單調區間和極值。

      2、構建答題模板

      ①求導數:求f(x)的導數f′(x)。(注意f(x)的定義域)

      ②解方程:解f′(x)=0,得方程的根

      ③列表格:利用f′(x)=0的根將f(x)定義域分成若干個小開區間,并列出表格。

      ④得結論:從表格觀察f(x)的單調性、極值、最值等。

      ⑤再回顧:對需討論根的大小問題要特殊注意,另外觀察f(x)的間斷點及步驟規范性。

      高考知識點的數學 第8篇

      =2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

      3、拋物線:①方程y2=2px注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

      4、直線被圓錐曲線截得的弦長公式:

      三、直線、平面、簡單幾何體:

      1、學會三視圖的分析:

      2、斜二測畫法應注意的地方:

      (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o"x"、o"y"、使∠x"o"y"=45°(或135°);

      (2)平行于x軸的線段長不變,平行于y軸的線段長減半.

      (3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

      3、表(側)面積與體積公式:

      ⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

      ⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

      ⑶臺體①表面積:S=S側+S上底S下底②側面積:S側=

      ⑷球體:①表面積:S=;②體積:V=

      4、位置關系的證明(主要方法):注意立體幾何證明的書寫

      (1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

      (2)平面與平面平行:①線面平行面面平行。

      (3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

      5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

      ⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

      ⑵直線與平面所成的角:直線與射影所成的角

      四、導數:導數的意義-導數公式-導數應用(極值最值問題、曲線切線問題)

      1、導數的定義:在點處的導數記作.

      導數的幾何物理意義:曲線在點處切線的斜率

      ①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

      常見函數的導數公式:①;②;③;

      ⑤;⑥;⑦;⑧。

      導數的四則運算法則:

      導數的應用:

      (1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那么為增函數;如果,那么為減函數;

      注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。

      (2)求極值的步驟:

      ①求導數;

      ②求方程的根;

      ③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;

      (3)求可導函數值與最小值的步驟:

      ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。

      五、常用邏輯用語:

      1、四種命題:

      ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

      注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

      2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

      3、邏輯聯結詞:

      ⑴且(and):命題形式pq;pqpqpqp

      ⑵或(or):命題形式pq;真真真真假

      ⑶非(not):命題形式真假假真假

      假真假真真

      假假假假真

      “或命題”的真假特點是“一真即真,要假全假”;

      “且命題”的真假特點是“一假即假,要真全真”;

      “非命題”的真假特點是“一真一假”

      4、充要條件

      由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

      5、全稱命題與特稱命題:

      短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

      短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

      高考知識點的數學 第9篇

      異面直線定義:不同在任何一個平面內的兩條直線

      異面直線性質:既不平行,又不相交.

      異面直線判定:過平面外一點與平面內一點的直線與平面內不過該店的直線是異面直線

      異面直線所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

      求異面直線所成角步驟:

      A、利用定義構造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

      (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

      (8)空間直線與平面之間的位置關系

      直線在平面內——有無數個公共點.

      三種位置關系的符號表示:aαa∩α=Aaα

      (9)平面與平面之間的位置關系:平行——沒有公共點;αβ

      相交——有一條公共直線.α∩β=b

      2、空間中的平行問題

      (1)直線與平面平行的判定及其性質

      線面平行的判定定理:平面外一條直線與此平面內一條直線平行,則該直線與此平面平行.

      線線平行線面平行

      線面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,

      那么這條直線和交線平行.線面平行線線平行

      (2)平面與平面平行的判定及其性質

      兩個平面平行的判定定理

      (1)如果一個平面內的兩條相交直線都平行于另一個平面,那么這兩個平面平行

      (線面平行→面面平行),

      (2)如果在兩個平面內,各有兩組相交直線對應平行,那么這兩個平面平行.

      (線線平行→面面平行),

      (3)垂直于同一條直線的兩個平面平行,

      兩個平面平行的性質定理

      (1)如果兩個平面平行,那么某一個平面內的直線與另一個平面平行.(面面平行→線面平行)

      (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

      3、空間中的垂直問題

      (1)線線、面面、線面垂直的定義

      兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

      線面垂直:如果一條直線和一個平面內的任何一條直線垂直,就說這條直線和這個平面垂直.

      平面和平面垂直:如果兩個平面相交,所成的二面角(從一條直線出發的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

      (2)垂直關系的判定和性質定理

      線面垂直判定定理和性質定理

      判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直這個平面.

      性質定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

      面面垂直的判定定理和性質定理

      判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直.

      性質定理:如果兩個平面互相垂直,那么在一個平面內垂直于他們的交線的直線垂直于另一個平面.

      4、空間角問題

      (1)直線與直線所成的角

      兩平行直線所成的角:規定為.

      兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

      兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

      (2)直線和平面所成的角

      平面的平行線與平面所成的角:規定為.平面的垂線與平面所成的角:規定為.

      平面的斜線與平面所成的角:平面的一條斜線和它在平面內的射影所成的銳角,叫做這條直線和這個平面所成的角.

      求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

      在“作角”時依定義關鍵作射影,由射影定義知關鍵在于斜線上一點到面的垂線,

      在解題時,注意挖掘題設中主要信息:

      (1)斜線上一點到面的垂線;

      (2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質易得垂線.

      (3)二面角和二面角的平面角

      二面角的定義:從一條直線出發的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

      二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

      直二面角:平面角是直角的二面角叫直二面角.

      兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

      求二面角的方法

      定義法:在棱上選擇有關點,過這個點分別在兩個面內作垂直于棱的射線得到平面角

      垂面法:已知二面角內一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

      国产另类无码专区|日本教师强伦姧在线观|看纯日姘一级毛片|91久久夜色精品国产按摩|337p日本欧洲亚洲大胆精

      <ol id="ebnk9"></ol>