七年級數學有理數教案第1篇【教學目標】(1)正確理解乘方、冪、指數、底數等概念.(2)會進行有理數乘方的運算.(3)培養探索精神,體驗小組交流、合作學習的重要性.【教學方法】講授法、討論法?!窘虒W重點下面是小編為大家整理的七年級數學有理數教案集錦6篇,供大家參考。
【教學目標】
(1)正確理解乘方、冪、指數、底數等概念.
(2)會進行有理數乘方的運算.
(3)培養探索精神,體驗小組交流、合作學習的重要性.
【教學方法】
講授法、討論法。
【教學重點】
正確理解乘方的意義,掌握乘方運算法則.
【教學難點】
正確理解乘方、底數、指數的概念,并合理運算.
【課前準備】
教師準備教學用課件,學生預習。
【教學過程】
【新課講授】
邊長為a的正方形的面積是a·a,棱長為a的正方體的體積是a·a·
a·a簡記作a2,讀作a的平方(或二次方).
a·a·a簡記 作a3,讀作a的立方(或三次方).
一般地,幾個相同的因數a相乘,記作即a·a…… 這種求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪.
在an中,a叫底數,n 叫做指數,當an看作a的n次方的結果時,也可以讀作a的n次 冪.
例如,在94中,底數是9,指數 是4,94讀作9的 4次方,或9的4次冪,它表示4個9相乘,即9×9×9×;又如(-2)4的底數是-2,指數是4,讀作-2的4次方(或-2的4次冪),它表示(-2)×(-2)×(-2)×(-2).
思考:32與23有什么不同?(-2)3與-23的意義是否相同?其中結果是否一樣?(-2)4與-24呢?( )2與 呢?
(-2)3的底數是-2,指數是3,讀作-2的3次冪,表示(-2)×(-2)×(-2),結果是-8;-23的底數是2,指數是3,讀作2的3次冪的相反數,表示為-( 2×2×2),結果是
(-2)3與 -23的意義不相同,其結果一樣.
(-2)4的底數是-2,指數是4,讀作-2的四次冪,表示
(-2)×(-2)×(-2)×(-2),
結果是16;-24的底數是2,指數是4,讀作2的4次冪的相反數,表示為
-(2×2×2×2),其結果為
(-2)4與-24的意義不同,其結果也不同.
( )2的底數是 ,指數是2,讀作 的二次冪,表示 × ,結果是 ; 表示32與5的商,即 ,結果是 .
因此,當底數是負數或分數時,一定要用括號把底數括起來.
一個數可以看作這個數本身的一次方,例如5就是51,指數1通常省略不寫.
因為an就是n個a相乘,所以可以利用有理數的乘方運算來進行有理數的乘方運算.
例1:計算:
(1)(-4)3; (2)(-2)4; (3)(- )5;
(4)33; (5)24; (6)(- )
解:(1)(-4)3=(-4)×(-4)×(-4)=-64
(2)(-2)4=(-2)×(-2)×(-2)×(-2)=16
(3)(- )5=(- )×(- )×( - )×(- )×(- )=-
教學目標
1、讓學生能進行包括小數或分數的有理數的加減混合運算。
2、讓學生進一步體會到有理數減法可以轉化為加法進行計算,并體會有理數加減法在實際中的應用。
教學重點與難點
重點:有理數加法和減法的混合運算。
難點:減法統一成加法再寫成代數和的形式。
教學過程
一、復習引入
課本P56圖是一條河流在枯水期的水位圖。此時,橋面距水面的高度為多少米?
可用兩種方法回答這個問題。
第一個方法:觀察畫面,從實際問題出發,橋面高出平均水位12.5米,水面又低于平均水位3分米(0.3米),兩段高度的和就是橋面距水面的高度??傻盟闶剑?2.5+0.3=12.8(米)。
第二個方法:利用有理數減法法則得算式:
12.5―(―0.3)=12.8(米)。
比較兩個算式,使學生進一步體會減法可以轉化為加法。另外,此題中進行了含有小數的有理數的減法運算。
二、新課的進行
某地區一天早晨的氣溫是-9℃,中午上升了11℃,半夜又下降了6℃。半夜的溫度是多少?
解法一:(-9)+11=2,2+(-6)=-4。
所以半夜的溫度是-4℃。
解法二:-9+11-6=2-6=-4。所以半夜的溫度是-4℃。
比較以上兩種解法,結果是一樣的,而解法二中的算式是有理數加減的運算。
議一議:P57議一議
通過對此問題的討論,學生將回顧有理數的加法法則,并用以進行有關小數的運算。計算如下:
4.5+(-3.2)+1.1+(-1.4)
=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)
此時飛機比飛點高了1千米。
注意運算順序是從左到右的計算過程。
還可以這樣計算:4.5-3.2+1.1-1.4
=1.3+1.1-1.4=2.4-1.4=1(千米)
此時飛機比飛點高了1千米。
比較以上兩種算法,你發現了什么?
(1)我們可以把有理數的加減法的混合運算統一成加法運算,使加減法的混合運算化為單一的加法運算。
(2)有理數的加減混合運算統一為加法運算以后,保留各加數的性質符號,去掉括號并把加號省略,而形成加減混合運算的簡潔的形式。
例1 計算(P58例1)
例2 計算:(1) (2)
解:(1)
(2)
三、課堂練習
1、課本P58隨堂練習1、(1),(2),(3)
2、計算:(1) (2)
四、課堂小結
根據有理數的減法法則,我們知道風是有理數的減法,都可以轉化為加法,利用有理數的加法法則去運算。因此,我們可以把有理數加減法的混合運算統一成加法以后,可以將算式寫成省略括號及前面加號的形式。
五、作業設計
1、P58 習題2.7 1,3
七年級上2.5有理數的減法(一)教案
教學目標:
1、經歷探索有理數減法法則的過程。
2、理解并初步掌握有理數減法法則,會做有理數減法運算。
3、能根據具體問題,培養抽象概括能力和口頭表達能力。
教學重點運用有理數減法法則做有理數減法運算。
教學難點有理數減法法則的得出。
教具學具多媒體、教材、計算器
教學方法研討法、講練結合
教學過程一、引入新課:
師:下面列出的是連續四周的最高和最低氣溫:
第1周第二周第三周第四周
最高氣溫+6℃0℃+4℃-2℃
最低氣溫+2℃-5℃-2℃-5℃
周溫差
求每周的溫差時,應運用哪一種運算?你認為計算結果應是什么?請列出算式,并寫出計算結果。
生:溫差分別是4℃、5℃、6℃、3℃,應使用減法運算。
列式為;
(+6)-(+2)=4
0-(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教學過程二、有理數減法法則的推倒:
師:1、根據上面的計算和計算結果,讓我們以求四周的溫差為例子研究一下,是否可以用加法的知識類做減法的運算。
2、是否能直接把減法轉化為加法來求差?猜想一下,完成這個轉化的法則是什么?
3、自己設計一些有理數的減法,用計算器檢驗一下你歸納的減法法則是否正確。
舉例:(-5)+()=-2
得出(-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而(-2)+(+5)=+3
有理數減法法則:減去一個數,等于加上這個數的相反數。
教學過程三、法則的應用:
例1:先做筆算,再用計數器檢驗。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教學過程
解:(1)原式=-34+(-56)+(+28)
=-90+(+28)
=-62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:強調計算過程不能跳步,體現有理數減法法則的運用。
檢測題
教學過程四、練習反饋:
師:巡視個別指導,訂正答案。
教學過程五、小結:
有理數減法法則:
減去一個數,等于加上這個數的相反數。
有理數減法法則:
減去一個數,等于加上
這個數的相反數。例1:先做筆算,再用計數器檢驗。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
一、有理數的意義
1.有理數的分類
知識點:大于零的數叫正數,在正數前面加上“﹣”(讀作負)號的數叫負數;如果一個正數表示一個事物的量,那么加上“﹣”號后這個量就有了完全相反的意義;3,,5.2也可寫作+3,+,+5.2;零既不是正數,也不是負數。
2.數軸
知識點:數軸是數與圖形結合的工具;數軸:規定了原點、正方向和單位長度的直線;數軸的三元素:原點、正方向、單位長度,這三元素缺一不可,是判斷一條直線是否是數軸的根本依據;數軸的作用:1)形象地表示數(因為所有的有理數都可以用數軸上的點表示,以后會知道數軸上的每一個點并不都表示有理數),2)通過數軸從圖形上可直觀地解釋相反數,幫助理解絕對值的意義,3)比較有理數的大?。篴)右邊的數總比左邊的.數大,b)正數都大于零,c)負數都小于零,d)正數大于一切負數
3.相反數
知識點:只有符號不同的兩個數互為相反數;在數軸上表示互為相反數的兩個點到原點的距離相等且分別在原點的兩邊;規定:0的相反數是0。
4.絕對值
知識點:一個數a的絕對值就是數軸上表示數a的點與原點的距離,數a的絕對值記作∣a∣;絕對值的意義:一個正數的絕對值是它本身,一個負數的絕對值是它的相反數,零的絕對值是零,即若a>0,則∣a∣=a.若a=0,則∣a∣=0.若a<0,則∣a∣=﹣a;絕對值越大的負數反而小;兩個點a與b之間的距離為:∣a-b∣。
二、有理數的運算
1.有理數的加法
知識點:有理數的加法法則:1)同號兩數相加,取相同的符號,并把絕對值相加;2)異號兩數相加,①絕對值相等時,和為零(即互為相反數的兩個數相加得0);②絕對值不相等時,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;3)一個數和0相加仍得這個數。
加法交換律:a+b=b+a;加法結合律:a+b+c=a+(b+c)
多個有理數相加時,把符號相同的數結合在一起計算比較簡便,若有互為相反的數,可利用它們的和為0的特點。
2.有理數的減法
知識點:有理數的減法法則:減去一個數等于加上這個數的相反數,即a-b=a+(-b)。
注意:運算符號“+”加號、“-”減號與性質符號“+”正號、“-”負號統一與轉化,如a-b中的減號也可看成負號,看作a與b的相反數的和:a+(-b);一個數減去0,仍得這個數;0減去一個數,應得這個數的相反數。
3.有理數的加減混合運算
知識點:有理數的加減法混合運算可以運用減法法則統一成加法運算;加減法混合運算統一成加法運算以后,可以把“+”號省略,使算式變得更加簡潔。
4.有理數的乘法
知識點:乘法法則:兩數相乘,同號得正,異號得負,并把絕對值相乘;任何數和0相乘都得0。
幾個不等于0的數相乘,積的符號由負因數的個數決定;當負因數有奇數個時,積為負;當負因數有偶數個時,積為正。幾個數相乘,有一個因數為0,積就為0。
乘法交換律:ab=ba乘法結合律:abc=a(bc)乘法分配律:a(b+c)=ab+bc
5.有理數的除法
知識點:除法法則1:除以一個數等于乘上這數的倒數,即a÷b==a(b≠0即0不能做除數)。
除法法則2:兩數相除,同號得正,異號得負,并把絕對值相除;0除以任何一個不等于0的數都得0。
倒數:乘積是1的兩數互為倒數,即a=1(a≠0),0沒有倒數。
注意:倒數與相反數的區別
6.有理數的乘方
知識點:乘方:求n個相同因數的積的運算。乘方的結果叫冪,an中,a叫做底數,n叫做指數。
乘方的符號法則:正數的任何次冪都是正數;負數的奇次冪是負數,負數的偶次冪是正數;0的任何次冪都為0。
7.有理數的混合運算
知識點:運算順序:先乘方,再乘除,最后算加減,遇到有括號,先算小括號,再中括號,最后大括號,有多層括號時,從里向外依次進行。
技巧:先觀察算式的結構,策劃好運算順序,靈活進行運算。
教學目標
理解有理數加法的意義,掌握有理數加法法則中的符號法則和絕對值運算法則;
能根據有理數加法法則熟練地進行有理數加法運算,弄清有理數加法與非負數加法的區別;
三個或三個以上有理數相加時,能正確應用加法交換律和結合律簡化運算過程;
通過有理數加法法則及運算律在加法運算中的運用,培養學生的運算能力;
本節課通過行程問題說明有理數的加法法則的合理性,然后又通過實例說明如何運用法則和運算律,讓學生感知到數學知識來源于生活,并應用于生活。
教學建議
(一)重點、難點分析
本節教學的重點是依據有理數的加法法則熟練進行有理數的加法運算。難點是有理數的加法法則的理解。
(1)加法法則本身是一種規定,教材通過行程問題讓學生了解法則的合理性。
(2)具體運算時,應先判別題目屬于運算法則中的哪個類型,是同號相加、異號相加、還是與0相加。
(3)如果是同號相加,取相同的符號,并把絕對值相加。如果是異號兩數相加,應先判別絕對值的大小關系,如果絕對值相等,則和為0;如果絕對值不相等,則和的符號取絕對值較大的加數的符號,和的絕對值就是較大的絕對值與較小的絕對值的差。一個數與0相加,仍得這個數。
(二)知識結構
(三)教法建議
對于基礎比較差的同學,在學習新課以前可以適當復習小學中算術運算以及正負數、相反數、絕對值等知識。
有理數的加法法則是規定的,而教材開始部分的行程問題是為了說明加法法則的合理性。
應強調加法交換律“a+b=b+a”中字母a、b的任意性。
計算三個或三個以上的加法算式,應建議學生養成良好的運算習慣。不要盲目動手,應該先仔細觀察式子的特點,深刻認識加數間的相互關系,找到合理的運算步驟,再適當運用加法交換律和結合律可以使加法運算更為簡化。
可以給出一些類似“兩數之和必大于任何一個加數”的判斷題,以明確由于負數參與加法運算,一些算術加法中的正確結論在有理數加法運算中未必也成立。
在探討導出有理數的加法法則的行程問題時,可以嘗試發揮多媒體教學的作用。用動畫演示人或物體在同一直線上兩次運動的過程,讓學生更好的理解有理數運算法則。
教學設計示例
有理數的加法(第一課時)
教學目的
使學生理解有理數加法的意義,初步掌握有理數加法法則,并能準確地進行有理數的加法運算.
通過有理數的加法運算,培養學生的運算能力.
教學重點與難點
重點:熟練應用有理數的加法法則進行加法運算.
難點:有理數的加法法則的理解.
教學過程
(一)復習提問
有理數是怎么分類的?
有理數的絕對值是怎么定義的?一個有理數的絕對值的幾何意義是什么?
有理數大小比較是怎么規定的?下列各組數中,哪一個較大?利用數軸說明?
-3與-2;|3|與|-3|;|-3|與0;
-2與|+1|;-|+4|與|-3|.
(二)引入新課
在小學算術中學過了加、減、乘、除四則運算,這些運算是在正有理數和零的范圍內的運算.引入負數之后,這些運算法則將是怎樣的呢?我們先來學有理數的加法運算.
(三)進行新課 有理數的加法(板書課題)
例1 如圖所示,某人從原點0出發,如果第一次走了5米,第二次接著又走了3米,求兩次行走后某人在什么地方?
兩次行走后距原點0為8米,應該用加法.
為區別向東還是向西走,這里規定向東走為正,向西走為負.這兩數相加有以下三種情況:
同號兩數相加
(1)某人向東走5米,再向東走3米,兩次一共走了多少米?
這是求兩次行走的路程的和.
5+3=8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的東邊.離開原點的距離是8米.因此兩次一共向東走了8米.
可見,正數加正數,其和仍是正數,和的絕對值等于這兩個加數的絕對值的和.
(2)某人向西走5米,再向西走3米,兩次一共向東走了多少米?
顯然,兩次一共向西走了8米
(-5)+(-3)=-8
用數軸表示如圖
從數軸上表明,兩次行走后在原點0的西邊,離開原點的距離是8米.因此兩次一共向東走了-8米.
可見,負數加負數,其和仍是負數,和的絕對值也是等于兩個加數的絕對值的和.
總之,同號兩數相加,取相同的符號,并把絕對值相加.
例如,(-4)+(-5),……同號兩數相加
(-4)+(-5)=-( ),…取相同的符號
4+5=9……把絕對值相加
∴ (-4)+(-5)
口答練習:
(1)舉例說明算式7+9的實際意義?
(2)(-20)+(-13)=?
(3)
異號兩數相加
(1)某人向東走5米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后,又回到了原點,兩次一共向東走了0米.
5+(-5)=0
可知,互為相反數的兩個數相加,和為零.
(2)某人向東走5米,再向西走3米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的東邊,離開原點的距離是2米.因此,兩次一共向東走了2米.
就是 5+(-3)
(3)某人向東走3米,再向西走5米,兩次一共向東走了多少米?
由數軸上表明,兩次行走后在原點o的西邊,離開原點的距離是2米.因此,兩次一共向東走了-2米.
就是 3+(-5)
請同學們想一想,異號兩數相加的法則是怎么規定的?強調和的符號是如何確定的?和的絕對值如何確定?
最后歸納
絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得
例如(-8)+5……絕對值不相等的異號兩數相加
8>5
(-8)+5=-( )……取絕對值較大的加數符號
8-5=3 ……用較大的絕對值減去較小的絕對值
∴(-8)+
口答練習
用算式表示:溫度由-4℃上升7℃,達到什么溫度.
(-4)+7=3(℃)
一個數和零相加
(1)某人向東走5米,再向東走0米,兩次一共向東走了多少米?
顯然,5+結果向東走了5米.
(2)某人向西走5米,再向東走0米,兩次一共向東走了多少米?
容易得出:(-5)+結果向東走了-5米,即向西走了5米.
請同學們把(1)、(2)畫出圖來
由(1),(2)得出:一個數同0相加,仍得這個數.
總結有理數加法的三個法則.學生看書,引導他們看有理數加法運算的三種情況.
有理數加法運算的三種情況:
特例:兩個互為相反數相加;
(3)一個數和零相加.
每種運算的法則強調:(1)確定和的符號;(2)確定和的絕對值的方法.
(四)例題分析
例1 計算(-3)+(-9).
分析:這是兩個負數相加,屬于同號兩數相加,和的符號與加數相同(應為負),和的絕對值就是把絕對值相加(應為3+9=12)(強調相同、相加的特征).
解:(-3)+(-9)
例2
分析:這是異號兩數相加,和的符號與絕對值較大的加數的符號相同(應為負),和的絕對值等于較大絕對值減去較小絕對值.
.(強調“兩個較大”“一個較小”)
解:#FormatImgID_13#解題時,先確定和的符號,后計算和的絕對值.
(五)鞏固練習
計算(口答)
(1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);
(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;
計算
(1)5+(-22);(2)()+(-8)
(3)()+;(4)+()
教師在備課時,應充分估計學生在學習時可能提出的問題,確定好重點,難點,疑點,和關鍵。根據學生的實際改變原先的教學計劃和方法,滿腔熱忱地啟發學生的思維,針對疑點積極引導。
非常高興,能有機會和同學們共同學習
昨天,老師在七年級三班上課時,把他們分成七個小組,每個小組回答問題的情況以搶答賽的形式記分。你們看(出示投影)這是七年級三班七個小組回答問題的表現情況。答對一題得一分,記作+1分;答錯一題扣一分,記作1分。第幾組最棒?老師還沒來得及計算出每個小組的最后得分,咱們班哪位同學能幫老師算出最后結果?(學生在教師引導下回答)
我們已得出了每個小組的最后分數,那么哪個小組是優勝小組?(第一小組),回去以后,老師就把小獎品發給他們,相信他們一定會很高興。
同學們,這節課你們愿不愿意也分成幾個小組,看一看那個小組的同學表現得最出色?(原意)那么老師就按座次給同學們分組,每一豎排為一組。老師把組號寫在黑板上,以便記分。
希望各組同學積極思考、踴躍發言。同學們有沒有信心得到老師的小獎品?(有)同學們加油!
我們已得到了這7個小組的最后得分,那位同學能試著用算式表示?(學生在教師指導下列算式)
以上這些算是都是什么運算?(加法),兩個加數都是什么數?(有理數),這就是我們這節課要學習的有理數的加法(板書課題)。
剛才老師說要給七年級三班的優勝組發獎品,老師手里有12本作業本,優勝組共6人,老師將送出的作業本數占總數的幾分之幾?(二分之一)分數最低的一組共7人,他們每人交給老師一個作業本,占總數的幾分之幾?(十二分之七)如果,老師得到的作業本記為正數,送出的作業本記為負數,則老師手里的作業本增加或減少幾分之幾?同學們能列出算式嗎?(學生列式)對于這個算式,同學們還能輕易的感知出結果嗎?(不能)
對于有理數的加法,有的同學們能直接感知得到結果,有的靠感知是不夠的,這就需要我們共同探索規律!(出示投影),觀察這7個算式,每一個算式都是怎樣的兩個有理數相加?(引導學生回答)你們還能舉出不同以上情況的算式嗎?(不能),這說明這幾個算式概括了有理數加法的不同情況。
前兩個算式的加數在符號上有什么共同點?(相同),那么我們就可以說這是什么樣的兩數相加?(同號兩數相加)同學們還能觀察出那幾個算式可歸為一類嗎?(3、4、5、異號兩數相加,6、7一個數同0相加)
同學們已把這7個算式分成了三種情況,下面我們分別探討規律。
(1) 同號兩數相加,其和有何規律可循呢?大家觀察這兩個式子,回答兩個問題。(師引導觀察,得出答案),那位同學能填好這個空?
(2) 異號兩數相加,其和有何規律呢?大家觀察這三個式子回答問題。(引導學生分成兩類,容易得到絕對值相同情況的結論。再引導學生觀察絕對值不相同的情況,回答問題)哪位同學能概括一下這個規律?(引導學生得出)
(3) 一個數同0相加,其和有什么規律呢?(易得出結論)
同學們經過積極思考,探索出了解決有理數加法的規律,顧一下(出哪位同學能帶領大家共同回顧一下?(出示投影,學生大聲朗讀)我們把這個規律稱為有理數的加法法則。
同學們都很聰明,積極參與探索規律,每個組都有不錯的成績。個別落后的組不要氣餒,繼續努力,下面老師就給大家一個得分的機會,看哪一組能[出題制勝]!(出示)
(活動過程1后評價、加分;教師以其中一題為例,講解題格式及過程;活動過程2后:讓每組第三排同學評價加分)
同學們已經基本掌握了有理數的加法法則,并會運用它,但七年級三班有幾位同學對這一內容掌握的不是太好,以致在作業中出了毛病,他們為此很苦惱。希望咱們同學能幫幫他們,看哪位同學能像妙手回春的神醫華佗一樣藥到病 除!(師生共同治病)
看來同學們對有理數的加法已經掌握得很好了,大家還記得前面那個難倒我們的有理數的加法題呢?那位同學能解決這個問題呢?(學生口述 師板書)。在大家的努力下,我們終于攻破了這個難關。
通過這節課的學習,大家有什么收獲?(學生回答)同學們都有很多收獲,老師認為收獲最多的是優勝組的同學,因為他們能得到老師的小獎品,大家趕緊看看那一組獲勝?歡迎優勝組上臺領獎,大家掌聲鼓勵!
同學們,希望你們在未來的學習和生活中都能積極進取,獲得一個又一個的勝利。